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Abstract

We propose a robust 3D hand tracking system in various hand action environments, including hand-object interaction, which
utilizes a single color image and a previous pose prediction as input. We observe that existing methods deterministically
exploit temporal information in motion space, failing to address realistic diverse hand motions. Also, prior methods paid
less attention to efficiency as well as robust performance, i.e., the balance issues between time and accuracy. The Temporally
Enhanced Graph Convolutional Network (TE-GCN) utilizes a 2-stage framework to encode temporal information adaptively.
The system establishes balance by adopting an adaptive GCN, which effectively learns the spatial dependency between hand
mesh vertices. Furthermore, the system leverages the previous prediction by estimating the relevance across image features
through the attention mechanism. The proposed method achieves state-of-the-art balanced performance on challenging
benchmarks and demonstrates robust results on various hand motions in real scenes. Moreover, the hand tracking system
is integrated into a recent HMD with an off-loading framework, achieving a real-time framerate while maintaining high
performance. Our study improves the usability of a high-performance hand-tracking method, which can be generalized to
other algorithms and contributes to the usage of HMD in everyday life. Our code with the HMD project will be available at
https://github.com/UVR-WJCHO/TEGCN_on_Hololens2.
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Displays(HMD), a volume of research for visually under-
standing human behaviors, especially hands, is being con-
ducted to provide a better experience to users (Han et al.
2020). It has been reported that a certain level of accuracy
and efficiency has been reached for a single hand (Lepetit
2020). However, the problem of understanding human
hands in various situations is still an active topic, including
hand-object interactions. Recently, studies in the field have
been focusing on utilizing RGB input due to the accessi-
bility of RGB cameras and goes beyond simply estimating
3D joint information; they reconstruct a dense hand mesh
for its usability in applications (Chen et al. 2022b, 2023;
Hasson et al. 2019b, 2020, 2021; Kulon et al. 2020; Lin
et al. 2021a, 2023; Ren et al. 2023; Yu et al. 2023; Zuo
et al. 2023). However, while the studies focus on accuracy
in various situations, they often fail to guarantee real-time
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performance and temporal coherence, which is crucial for
real-world applications.

Few studies (Chen et al. 2022a; Moon and Lee 2020;
Park et al. 2020a, b; Tang et al. 2021; Xu et al. 2023;
Zheng et al. 2021) have considered limited computational
resources and attempted to achieve state-of-the-art perfor-
mance while ensuring real-time conditions. They proposed
a method using a light-weight network structure (Moon
and Lee 2020; Xu et al. 2023), adaptive Graph Convolution
Network(GCN) (Zheng et al. 2021), additional sensors (Park
et al. 2020a, b), or a mobile-friendly pipeline that does not
require GPU setup (Chen et al. 2022a). For temporal coher-
ence, recent studies investigate temporal cues from past and
future information based on sequential models (Cai et al.
2019; Chen et al. 2021a; Fu et al. 2023; Han et al. 2020;
Kocabas et al. 2020; Ye et al. 2023) or adopt global fea-
tures in a single view as a non-sequential model (Chen et al.
2022a). Overall, the existing methods utilize temporal infor-
mation mainly as a constraint to penalize the current pre-
diction or estimate the pose candidate by extracting motion
information such as optical flow. However, we have observed

Fig.1 Visualization of reconstructed hand mesh with our method
from Hololens2 RGB input. The hand mesh is rendered in the off-
loaded server
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that these methods utilize temporal information rather deter-
ministically, relying on a constant motion model. Thus, we
intend to explore a method that adaptively utilizes temporal
information to cover realistic hand motion aspects (Fig. 1).

Moreover, several remaining issues must be addressed to
apply the findings of hand-tracking research to AR devices.
To ensure reliable performance in various situations, it is
essential to have access to a significant amount of computa-
tional resources, such as a GPU. Also, from an implemen-
tation standpoint, there is a potential problem: individual
hardware characteristics differ between AR devices, such as
the Hologram Processing Unit(HPU) of the Hololens2 and
the Qualcomm Snapdragon XR2 processor of the Oculus
Quest 2 developed by Meta. Therefore, we determined that
a system incorporating an off-loading framework is neces-
sary to leverage standard GPU resources, irrespective of the
hardware specifications of different AR devices.

Through these inspirations, we aim to develop a fast
hand-tracking system assisted by adaptive temporal cues
and integrate the proposed system on AR HMD through the
off-loading framework to verify the effectiveness of the sys-
tem in realistic scenarios where hands interact with objects
(Fig. 2). To achieve our goal, we focus on three main points
for the hand pose estimation system: First, we leverage GCN
which is capable of establishing relationships between the
vertices of a hand mesh. Previous studies have demon-
strated the significance of GCN-based systems in accuracy
and efficiency by adeptly retaining the structure of the hand
mesh while capturing attention between vertices. Tang
et al. (2021) utilized GCN to refine a rough mesh by incor-
porating local and global features, while Zheng et al. (2021)
proposed a system based on adaptive-GCN that enables
spatial-aware regression, which has been adopted for our
system. Second, adaptive temporal information utilization
is suitable for real-world behavior aspects. As mentioned,
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Fig.2 Schematic of proposed system
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most previous works utilizing temporal information assume
a constant position or constant velocity model to generate
stable predictions. However, there are cases where a specific
motion model cannot be applied, such as fast-moving
or hand-shifting moments or HMD users’ head movement
that significantly changes the hand position with respect
to the camera view. To address this issue, we propose the
pose-attention encoder, which determines the proportion of
previous prediction information to be utilized. The module
generates a weighted feature by estimating the relevance of
hidden states, such as the current image feature and previous
pose feature, which is motivated by an attention mechanism.
Third, the trainable dataset category is expanded by intro-
ducing a retroactive data generator(RDG). The availability
of sufficient high-quality datasets is a critical factor affect-
ing the performance of learning-based methods. However,
prior approaches incorporating temporal information relied
on sequential datasets, typically comprised of real-world
video sequences, leading to a more constrained hand pose
space than synthetic and non-sequential datasets. Hence, we
introduced an RDG that generates a distributed augmented
pose, effectively simulating the previous pose by constrain-
ing the extent of the common augmentation procedure and
categorizing the data type. The approach enables the training
of temporal information regardless of the sequentiality of the
dataset (Fig. 3).

We train and evaluate our hand tracking system on the
FreiHAND, DexYCB dataset and demonstrate our complete
system on Hololens2 with the off-loading framework. Our
system verifies state-of-the-art performance and reliable
results on HMD. The integrated application on HMD will
be made publicly available.

Our main contributions are summarized as follows:

1. Propose a novel approach for adaptive temporal informa-
tion utilization suitable for realistic hand behavior.

2. Real-time 3D hand reconstruction system capable of
learning temporal information regardless of the specific
characteristics of the dataset.

3. Implement a scalable framework that leverages a distrib-
uted offloading system on an HMD.

2 Related work

Our target domain is the reconstruction of 3D hand poses
and meshes using monocular RGB images captured from an
egocentric viewpoint, including sequences that involve inter-
actions with objects. In this section, we will review recent
studies on 3D hand pose and mesh estimation from RGB
input. Most of these studies are not limited to hand-only
sequences and verified with public hand-object datasets. We
will then discuss recent advances in GCN directly relevant
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Fig.3 2D t-SNE visualization of 1000 FreiHAND samples. Each
frame has a distinct hand pose, as the dataset is non-sequential. We
generate a synthesized previous pose from the ground truth of the
current pose within the adjusted distribution of pose space from RDG

to our research and summarize how temporal information is
utilized in the pose estimation problem.

2.1 3D hand pose and mesh estimation from RGB

The current state-of-the-art hand pose and mesh estimation
is dominated by deep learning-based approaches, which
can roughly divide into generative and discriminative
approaches.

Generative approaches regress the pose and shape
coefficients of the parametric hand model, typically
MANO (Romero et al. 2017a), as a differentiable layer in the
network. Recent works (Cao et al. 2021; Chen et al. 2022b;
Hasson et al. 2019b, 2020; Wang et al. 2020a) propose the
work with an autoencoder (Kingma and Welling 2013),
which combines an image feature encoder and a model
parameter decoder. Additional supervision is often applied
using the feature extracted in the intermediate step, such
as segmentation map, projected 2D keypoints, etc (Baek
et al. 2019; Boukhayma et al. 2019; Chen et al. 2021c; Lin
et al. 2023; Zhang et al. 2019b, 2021; Zhou et al. 2020).
Among these works, Baek et al. (2020) introduce an end-
to-end trainable system utilizing various data sources from
hand-only and hand-object domains through a domain adap-
tion using Generative Adversarial Network. In studies that
presented various benchmark datasets, regressing the coef-
ficients of this parametric hand model is used as the baseline
method (Hampali et al. 2020; Zimmermann et al. 2019). Few
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works proposed a semi/self-supervised framework based on
the autoencoder (Liu et al. 2021; Tu et al. 2022) and neu-
ral rendering-based optimization system (Qu et al. 2023).
As the prior information on hand shape is embedded in a
parametric model, it is relatively less dependent on train-
ing data, and plausible hand pose can be expected in vari-
ous environments. However, since hand pose and shape are
generated with a few parameters, the expressable pose space
is limited, and fitting the coefficients is challenging due to
the nonlinearity of the model parameters. To overcome the
limitation, we adopt a discriminative approach that regresses
the coordinates of the mesh or joint without relying on a
fixed hand model.

The discriminative approach can be classified based on
whether the objective is a joint or a mesh vertex and whether
the pose coordinates are directly regressed or regressed as
a heatmap. In the case of directly regressing the hand joint,
various studies based on autoencoders have been introduced
to effectively learn latent space from RGB images (Spurr
et al. 2018; Yang and Yao 2019; Yang et al. 2019). Due to
the rich information and usability of mesh, regression for
each vertex of the hand is also studied, and most of these
approaches adopt a GCN or a transformer (Chen et al. 2021b;
Ge et al. 2019; Kulon et al. 2020; Lin et al. 2021b). Further-
more, non-direct regression approaches to target coordinates
have also been proposed. Zimmermann et al. (Zimmermann
and Brox 2017) proposed estimating a 2D heatmap for each
joint using a Convolutional Pose Machine (Wei et al. 2016)
and lifting it to a 3D pose. Igbal et al. (2018) and Mueller
et al. (2018) have demonstrated that the regression approach
of the 2.5D representation, which consists of a 2D heatmap
and a relative depth map of the hand, is more effective than
direct-coordinate regression. Subsequent studies adopt the
framework and indicate promising results (Fan et al. 2021;
Spurr et al. 2020). Moon et al. (2020) introduced a method
for estimating 1D heatmaps per axis for each human body
mesh vertex, including the hand. As such, estimating a 2.5D
dense heatmap for each mesh vertex has attracted attention
to perform effective mesh reconstruction (Moon et al. 2020;
Yang et al. 2021; Zheng et al. 2021). Recent studies have
also presented promising results in 3D shape reconstruction
using Signed Distance functions(SDFs) (Chen et al. 2022b,
2023; Ye et al. 2023). Since the discriminative method gen-
erally adopts a single-frame prediction pipeline, a jittery pre-
diction issue occurs. Also, as the method is highly depend-
ent on the training dataset, there is a risk of overfitting and
encountering a generalization problem.

Most of the studies mentioned above do not satisfy the
real-time condition as they primarily focus on improving the
accuracy of the proposed method. Recently, the balancing
issue between accuracy and efficiency has been raised for
the practical application of hand pose estimation. To achieve
real-time performance, several works have rigorously
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designed lightweight networks (Lim et al. 2020; Kulon
et al. 2020; Moon and Lee 2020; Xu et al. 2023; Zheng et al.
2021; Zhou et al. 2020). MobRecon (Chen et al. 2022a) pro-
posed a system that requires minimal computing resources
with mobile-friendly lightweight stacked structures and a
novel feature lifting module. Tang et al. (2021) developed
an efficient multi-stage framework and mesh refinement
using GCN, which satisfies both high accuracy and real-
time conditions. Some approaches focus on formulating an
efficient loss function for joint optimization or integrating
specific constraints to achieve the goal. Zhang et al. (2019a)
proposed a unified framework combining LSTM with hand
and object joint optimization processes and constructing
an efficient system by carefully designing mesh-related
losses. Kulon et al. (2020) applied a decoder based on spa-
tial mesh convolutions and utilized a simple loss function
for mesh reconstruction. H20ONet (Xu et al. 2023) achieved
high performance by decoupling the reconstruction pipe-
line into lightweight structures but adopted scenario-specific
assumptions.

We focus on the 2.5D heatmap regression approach, tar-
geting hand vertices, and construct a pipeline with a module
capable of adaptively utilizing temporal information. Fur-
thermore, we achieved high mesh reconstruction accuracy
by designing a GCN-based efficient network while maintain-
ing real-time performance. Our method has been success-
fully utilized in real application scenarios with users wearing
an AR HMD.

2.2 Graph-convolution network based pose
estimation

Due to the ability to reflect the structural characteristics of
the hand or body in the form of a graph, the approach based
on the graph convolution network has been steadily gaining
attention in the pose estimation problem. GCN can be clas-
sified into spectral domain (Bruna et al. 2013; Defferrard
et al. 2016; Kipf and Welling 2016) that performs convolu-
tional operation with Fourier transformation, and a spatial
domain (Gilmer et al. 2017; Monti et al. 2017; Xu et al.
2018) that outperforms in the field of pose estimation by
expanding the spatial definition of a convolution.

In the spectral domain, some works utilize GCN to recon-
struct a hand or body mesh in a coarse-to-fine way (Choi
et al. 2020; Ge et al. 2019). Further, the coarse-to-fine
scheme has extended in a spatial domain based on a simple
encoder-decoder architecture (Chen et al. 2021b; Kulon et al.
2020). Lin et al. (2021a) improved the regression accuracy
by modeling global vertex-vertex interaction using a trans-
former (Vaswani et al. 2017). Tse et al. (2022) proposed a
hand reconstruction system based on attention-guided graph
convolution, which can capture dynamic mesh information.
In the two-hand reconstruction domain, Li et al. (2022)
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proposed a pyramid image feature attention module to cap-
ture local and global patch attention simultaneously. Zheng
et al. (2021) pointed out that the initial feature graph-
building process used in previous studies caused a loss of
spatial information and introduced a framework including a
spatial-aware graph-building method. Our study adopted this
framework due to the simplified structure and efficiency of
the lightweight regression module.

2.3 Temporal coherence on pose estimation

Recent works attempt to satisfy hand pose coherence over
time by utilizing temporal information since the prediction
of the previous frame includes a dense queue for the cur-
rent frame’s pose. To propagate temporal information across
frames, one approach suggested in a study (Hossain and
Little 2018) involves employing a sequence-to-sequence
model, while another study (Cai et al. 2019) introduces the
use of a spatial-temporal graph. Video input is also utilized
to exploit temporal features (Cai et al. 2019; Chen et al.
2021a; Fu et al. 2023; Kocabas et al. 2020; Ye et al. 2023;
Zhao et al. 2021), but in this case, a frame-to-frame real-time
operation is not feasible due to the heavy structural system or
the necessity of future information. Han et al. (2020; 2022)
demonstrate an integrated hand-tracking system within the
Oculus Quest VR headset, utilizing the available inputs that
depend on the hardware and proposed a regression network
using tracking history. Chen et al. (2022a) design a feature
lifting module utilizing a global receptive field for tempo-
ral coherence in a single-view method that does not rely
on sequential information. Yang et al. (2020) introduce a
technique for synthetically generating extensive sequential
datasets to utilize the temporal motion information of the
hand. In contrast, our approach presents acquiring temporal
information from pre-existing non-sequential datasets.

Our critical insight is that adaptive utilization of tempo-
ral information enables robust pose prediction possible via
imitating realistic hand motion aspects. In contrast, previous
studies targeted temporal coherence, an effective indicator
when assuming a constant position/velocity model. It pro-
vides significant stability of the predictions for datasets in a
controlled environment but does not cover unintended hand
motions from a real user. Therefore, we propose a pose-
attention encoder to address this limitation by estimating
the feature-level relevancy of the current image and previ-
ous pose.

3 Method

Our goal is to propose a hand tracking system in HMD by
estimating a set of hand pose joints j, € R*** and mesh
vertices v, € R¥3 in 3D space with N vertices for current

frame ¢, given an input RGB image I, € R™"3 and joint
pose prediction from the previous frame j,_;. To fully utilize
the given information, we designed a two-stage structured
approach. In the first stage, we extract a feature map from the
input image and estimate coarse pose through adaptive-GCN
based module. In the second stage, we refine the prediction
by using the regressed coarse pose and the adaptive temporal
pose feature induced from the latent feature map in the inter-
mediate stage and the information of the previous frame.
In the following, we will describe the details of each stage.

3.1 Coarse pose estimation
3.1.1 Initial graph building

The first coarse estimation step is based on the one proposed
by Zheng et al. (2021). The input image / passes convolu-
tion blocks to extract the image feature map f;,,,,, € R">"*¢
with a feature size n, and dimension of ¢. During the ini-
tial feature extraction process, the latent feature map
Fratens € R ™21 with a feature size of n,, is generated and
fed into the pose-attention encoder for the dense estimation
step. The initial feature graph G° € R¥X(*3) is constructed
by initial graph building module SAIGB from (Zheng et al.
2021), while O indicates the stage 0. It uniformly distributed
each portion of the feature map to every vertex of the fea-
ture graph and concatenated template coordinates of each
vertex from a parametric hand model MANO (Romero et al.
2017b). It has been shown that the approach significantly
improves network performance by effectively transferring
the extracted spatial information.

3.1.2 Adaptive GCN-based coarse regression

In the coarse pose estimation step, temporal information is
not utilized to leverage the discriminative method’s strength,
which is highly effective in single-shot detection. Therefore,
the first pose regression is based solely on the image features
extracted from the initial graph building. The graph convo-
lution operation to regress the vertex interactions can be
represented as below refer to (Doosti et al. 2020):

G = c(AG'W) 1)

where ¢ is the activation function, A € R™" is the row-nor-
malized adjacency matrix per graph with n nodes, and W
is the trainable weights matrix, { indicates the stage of the
system. As shown in (Zheng et al. 2021), a trainable adja-
cency matrix A that is initialized with the identity matrix
effectively constructs the vertex interactions and allows the
capture of flexible range dependencies. We stack two layers
of adaptive-GCN with a LeakyReLu and Dropout consider-
ing the balance of performance and computation speed. The
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ablation study in Sect. 4.6 proves that the designed module
shows the best performance improvement without compro-
mising real-time operating conditions.

3.1.3 2.5D pose representation

Previous studies (Igbal et al. 2018; Moon and Lee 2020;
Zheng et al. 2021) on various pose regression problems indi-
cate that predicting the target in the form of a belief map,
rather than directly estimating the target coordinate,
improves the accuracy of the estimation. Following
the (Igbal et al. 2018), we apply spatial softmax normaliza-
tion and Hadamard product to the latent feature map from
the last layer of GCN to generate a 2.5D belief map
h°,d° € RN where h, indicates a 2D belief map and d,
is a relative depth map, each with the belief map size n,. For

dense estimation, a 2.5D belief map h?,d? € RW>X21 g

extracted through fully connected 1aye.rs, which includes
compressed information on hand pose.

3.2 Dense pose estimation

In contrast to Zheng et al. (2021), the baseline for the coarse
estimation step, our network is engineered to adaptively lev-
erage temporal information to handle various hand move-
ment scenarios. Specifically, in cases where the current hand
pose is similar to the previous pose and the hand moves
gradually, the network intensively utilizes information from
the previous prediction. On the other hand, in cases where
there is a significant difference in poses between frames,
such as when the hand is moving quickly or undergoing
rapid changes, the network prioritizes information from the
current image instead of the previous prediction.

For this purpose, we introduced the pose-attention
encoder(PAE), which takes the previous frame’s pose heat-
map h, s, and the input image’s latent feature map f,,,,,
to estimate the pose-attention weight w,. This weight is
designed to indicate how much the network should focus
on prior pose information. The PAE allows the network
to selectively utilize the previous pose information while
learning discriminative features between the image and
pose in the embedded space. The weighted previous pose
heatmap and 2.5D belief maps of joints extracted from
coarse prediction are then fed into the distinct GCN mod-
ule to regress the final dense pose/mesh j!, v!, where 1
indicates stage 1. To fully utilize given resources, we
develop a Retroactive Data Generator(RDG) applied only
for the training process, which produces data that can be
interpreted as a ground-truth hand pose of the previous
frame in any dataset. The module allows us to generate
valuable temporal data that resembles a real-world envi-
ronment. Thus, the RDG directly contributes to improving
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the generalization performance of the network. The fol-
lowing sections will provide a detailed description of each
module in the order of their operation within the system.

3.2.1 Retroactive data generator

Based on the insight that the previous pose does not neces-
sarily have to match the true previous pose precisely, we
developed a limited range of augmented poses, termed ret-
roactive data, treated as the ground-truth for the previous
pose. To fulfill the intended purpose of generated data, we
carefully design the existing augmentation process; instead
of a random pose generator role, we propose a module
capable of representing the distribution of previous poses
observed in real-world scenarios. However, directly feed-
ing only the retroactive data as the previous pose to the
model was found to lead to learning a dependency on the
previous pose. To mitigate this, we set RDG to results
poses with a value of 0, thus enhancing the realism of
the previous pose dataset. By including a zero-value pose
that significantly deviates from the actual previous pose,
the subsequent PAE phase avoids simply depending on
the previous pose. Instead, it recognizes the possibility
of incorrect values and selectively utilizes the provided
RDG data based on the assessed importance of the previ-
ous pose data. Thus, RDG can induce a robust predic-
tion result even in the absence of a previous pose, which
contributes to re-initialization due to intermittent tracking
failure. Furthermore, a notable advantage of synthesizing
the previous pose is the ability to assess the quantitive
similarity between the previous and current poses. Accord-
ingly, we derived the attention weight from the RDG and
incorporated it into the subsequent stages as a metric indi-
cating the degree of attention that should be allocated to
the previous pose.

We categorized the generated pose data into three types:
static, perturbed, and zero-value. The static type refers to
generating previous pose data identical to the ground-truth
current pose, while the perturbed type involves adding
noise to the current pose. We conducted an ablation study
to evaluate the impact of each data type and the performance
based on the distribution ratio of each type. Regarding the
perturbed type, we apply normal-distributed noise indepen-
dently to the entire hand and each joint. This combination of
global and local translation leads to realistic data augmenta-
tion. We generate a raw 2.5D pose heatmap £, 5, € R
from the augmented 2.5D joint pose by assigning a rela-
tive depth value to the 2D pixel location of each joint with
heatmap size n,,. Also, a 2D Gaussian kernel is applied for
a plausible heatmap representation. With the sampled type
and generated noise, we compute the ground-truth attention
weight * as follows:
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®* = cos (E ﬁ)) 2
2 ¢ &

 denotes latent weight in range @ € (0, ¢) due to the pose
type, c is a constant value manually set to 10. The equation
yields @w*, which equals 1 when the previous pose is identi-
cal to the ground-truth of the current frame, approaches 0 as
the magnitude of the applied noise grows, and becomes 0 in
the case of a zero-value pose. In the inference, a dense joint
pose from the previous frame jll_1 has transferred instead
of generated pose from RDG, and only the raw 2.5D heat-
map generation process is performed. The organization and
distribution of RDG data will be extensively discussed in
Sect. 4.6. Notably, we do not distinguish between sequen-
tial and non-sequential datasets provided in the training pro-
cess. In all cases, the RDG receives the ground-truth pose
of the current frame j* € R*" as input and generates a
raw 2.5D heatmap £, 5, and ground-truth attention weight
w* as output.

3.2.2 Pose-attention encoder

The main purpose of the PAE is to estimate the relevance
of the previous frame’s information compared to the cur-
rent frame’s image by extracting the attention weight w,,.
First, in order to generate a more realistic pose heatmap
from the raw 2.5D heatmap £, 5, a previous pose belief
map h,_; € R"*">*2! is generated using a small convolu-
tional block that has the same resolution as the latent image
feature f,,,,. Then, the attention weight w, is computed and
multiplied to the previous belief map #,_;:

w h,_, = PAE(Concat(h,_y, fiaen)) 3)

PAE performs a comparable function to previously sug-
gested attention-based modules as it updates the corre-
sponding hand pose feature with an attention-based input
image feature. However, unlike existing systems that had
to derive the correct hand pose directly from the image
input, we require a pose feature only for refining the coarse
pose, which plays a more indirect role. In general, existing
attention-based modules such as a transformer require a sub-
stantial number of parameters and expensive computations,
so we designed PAE rather explicitly. Using a configura-
tion that includes a depthwise separable convolution layer,
a LeakyReLU activation layer, and a max pooling layer,
we extract a single attention weight through a lightweight
network. This approach takes into account both spatial and
channel-wise features. We also tested with a network archi-
tecture based on transformers, drawing inspiration from Inta-
gHand (Li et al. 2022) and FastMETRO (Cho et al. 2022),
which introduced GCN-based attention modules. Neverthe-
less, even though it yielded slightly lower performance, we
observed a substantially reduced inference speed(84.3 FPS

for same setup in Table 1). Consequently, we opted for the
explicit encoder structure that we currently employ.

3.2.3 Refinement module

As indicated in Zheng et al. (2021), utilizing all the mesh
vertex information estimated in the coarse pose estimation
step is inefficient. Thus we use only per joint 2.5D belief
maps hj(.), de for dense estimation. In the same way as coarse
estimation, the SAIGB module is used, but in this case, the
initial graph G' is constructed by incorporating not only
image features but also the output of coarse pose estimation
and weighted belief map extracted from the previous
prediction.

G' = SAIGB(Concat(h), ] fizens» @ahy—1)) 4)

The final graph G! estimated with Eq. 1, and 2.5D belief
maps per vertex hi, d 3 are extracted in the same way. Finally,
the 2D location of the kth vertex of mesh v is computed with
a weighted average of the 2D belief map hl{, and the corre-
sponding depth is calculated as a summation of the relative
depth map d",. We denote Q as the set of all pixel locations
in the input image and each pixel location as p, then the 2D
location of kth vertex u,, v; and relative depth d, is computed
as below:

(“k’ Vk) = Z hv(p) P 5)
peEQ
dk = z dv(p) (6)
pEQ

The training process of our system is conducted end-to-end.
The coarse hand pose is estimated using only the image fea-
tures of the current frame, and the previous frame’s predic-
tion is adaptively utilized to refine the pose densely. This
structure enables the production of temporally consistent
poses as well as robust single-shot estimation. This system
improves the user experience by providing low-jitter 3D
hand poses and operates effectively in a real environment
with complex hand motion aspects.

3.3 Loss

We define the loss function in two configurations. Hand loss
to minimize the discrepancy between the predicted hand
mesh and ground-truth data, and Atfention loss to induce
the network to reflect the properties of real sequential data
as we intended.

Hand Loss We apply the L1 norm between prediction and
ground-truth of hand vertex and joints.
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N g _ *
weight — ||Wa -w ” (13)
Z’ert = Z ”vn - V;”l (7)
n=1 Thus the total loss for the Pose-attention encoder is defined
as:
N
"Zj’oint = Z ”]n _]: ”1 (8) "guttentinn = weight + j'2 * "%lm (14)
n=1

where v, and j, indicates a n th vertex and joint of the mesh,
respectively; x denotes the ground-truth.

We also adopt the mesh smoothness term follow-
ing (Chen et al. 2022a; Wang et al. 2018; Zheng et al. 2021),
as it demonstrated promising results for mesh quality. The
loss function for normal vector and edge length is defined
as follows:

L=V,

— ! J *
"Zmrmal - 2 2 T nc (9)
ceC (ij)ec Hvl- - ij2
— —v. _ * .,k
Ziae= 2, 2 =l =P = L] (10)
ceC (ij)ec

where C is face sets of mesh and n, indicates a unit normal
vector of face c.

We iteratively apply the hand loss for each stage, so the
total loss for hand is defined as:

+i x L

normal

+.§f;dge (11)

T

"%zand = 21 "Z)ert + "gjoint
P

where .& represents the loss in stage ¢ and A, is set to 0.1 for

scaling the normal loss term.

Attention Loss To transfer the previous pose information
to the refinement module, we use a weighted feature map
@, h,_,, which has the same resolution as the 2D belief map
per joint h](.’, the output of coarse pose estimation. However,
since we generate /1, 5, from raw 2.5D joint j,_j, it may con-
sist of a different distribution pattern than the pose distribu-
tion of the belief map generated through GCN. Therefore,
we proposed a heatmap loss to induce the distribution of
latent heatmap 4,_, to be similar to h;.), only when the ground-
truth for the result of coarse pose estimation becomes identi-
cal to the previous pose data. In other words, we applied the
L2 loss between heatmaps only when the attention weight
w*is 1.

L = ”h;’ —h,_, || onlyif w*=1.0 (12)

This caused the refinement module to incorporate the previ-
ous frame’s pose information more effectively, and we veri-
fied the effect in the ablation study.

We use L2 norm for the attention weight w, from Pose-
attention encoder and ground-truth similarity w*.
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A, 1s set to 10 according to preliminary experiments.

We train our network for each dataset and report cross-
trained models utilized for real HMD applications. In all
cases, the model trained based on the total loss .Z

L= %and + Zlnemian (15)

3.4 Offloading framework for HMD

To overcome the challenge of deploying a deep learning
network onto the HPU of the Hololens 2, we devised the
offloading framework shown in Fig. 4. The image data cap-
tured from the Hololens 2 is transmitted to a server and pro-
cessed by our system to predict the hand pose, and only the
predicted hand pose data is sent back to the Hololens 2.
Our system utilizes the WebSocket communication proto-
col. Unlike the request-response model of HTTP, Websocket
maintains a persistent connection after being established,
resulting in lower latency for data transmission by elimi-
nating unnecessary header data. Also, to account for net-
work bandwidth and latency, the Hololens2 transmits the
compressed image to the server over the network. We adopt
the lossy compression algorithm based on its compression
performance and encoding time. Utilizing lossy compression
reduces network traffic drastically with negligible latency
increases.

After the transmission, the server decodes the data to
restore the image, which loses slight information compared
to the original image. For pre-processing, we adopt a detec-
tion-by-tracking approach described in (Han et al. 2020) to
crop the hand region. The input is cropped using a prede-
fined bounding box initially, and the next center of the hand
is extrapolated from the previous two tracked poses. Sub-
sequently, the proposed system is executed, yielding 2.5D
hand poses in image coordinates, which are then transmitted
back to the Hololens2. On the device side, the root depth is
extracted from the depth image in the HMD through 2D pose

Device Server

le thwa
|—' >
WebSock WebSocket

Client Server
Displ. aam
=5 j € R21X3

Fig.4 Diagram for HMD application

| Sensors

TE-GCN
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prediction on the wrist. Finally, the 2.5D hand pose is lifted
to a 3D hand pose in world coordinates using the camera
parameters of the HMD and the root depth.

4 Experiment

We evaluate our hand tracking system on recent hand-object
datasets: FreiHAND and DexYCB. Also, the performance
of our full framework on HMD is verified with qualitative
results in the real world. Since we intend the system to be
trainable with all features of various datasets, we evaluate
both the non-sequential dataset(FreiHAND) and the sequen-
tial dataset(DexYCB). Please note that both datasets were
treated as non-sequential during the training phase. This
indicates that the continuous frame information from the
DexYCB was not utilized. Instead, we aimed to replicate the
learning of temporal information solely using data generated
by RDG.

4.1 Datasets

FreiHAND (Zimmermann et al. 2019) is a large-scale hand
dataset that consists of non-sequential hand poses with real-
world objects and various synthesized backgrounds. It com-
prises monocular color images with pose/mesh annotations
for 130,240 training samples, while the evaluation set has
3960 samples with real-world backgrounds and supports an
online-evaluation system.

DexYCB (Chao et al. 2021) is currently the most recent
benchmark for real hand-object interaction sequences. This
dataset comprises 582K RGB-Depth frames of a hand
interacting with 20 YCB objects, including 1000 grasping
sequences with a black background. We mainly used the
official SO split dataset and considered both right and left-
hand samples while filtering out samples whose hand center
is outside the image. Evaluation of the remaining official
split S1 (unseen subjects), S2 (unseen views), and S3(unseen
grasping) sets are also conducted.

4.2 Evaluation metrics

As our output of the model is the 3D hand joint/vertex, we
evaluate both joints and vertices in FreiHAND and only
joints in DexYCB according to the ground-truth provided
by each dataset.

Mean per Joint/Vertex Position Error (MPJPE/MPVPE)
is computed by Euclidean distances(mm) between the pre-
dicted 2.5D joint/vertices and ground-truth data after per-
forming a 3D alignment with Procrustes analysis.

F-Score states the harmonic mean between recall and
precision between two data w.r.t a threshold. We report
F@5 mm and F@15 mm.

Area Under Curve (AUC) is the area under the percent-
age of correct keypoints(PCK) curve with error thresholds.

Mean keypoint acceleration (MKA) is computed follow-
ing Han et al. (Han et al. 2020) and reported only on the
DexYCB, as the metric requires sequential ground-truth
information. The metric indicates the temporal smoothness
of the predicted pose set, which is computed as below:

MKA, = mean(j,_; +j..1 —2j,) (16)

where MKA, and j, are the mean acceleration and joint
position of the hand in the frame z. Despite the acceleration
showing erroneous results when there is sudden hand move-
ment, it has been employed as a valuable metric in previous
studies (Han et al. 2020; Kanazawa et al. 2019; Tu et al.
2023) as it is a metric that approximates temporal smooth-
ness in general AR/VR usage scenarios.

4.3 Implementation details
4.3.1 Preprocessing

The input images are cropped with a hand-bounding box and
resized to 256x256. Then the augmentation process consists
with scaling(+25%), rotation(+60°), random horizontal flip,
color jittering(+20 of RGB in 8-bit) is performed. To acquire
the bounding box, we crop the image with a fixed box size
from the center of the image on the FreiHAND and adopt
refined root depth provided by I2L.-MeshNet (Moon and Lee
2020). In the case of Dex YCB, since the recorded hand posi-
tion is not centered, we crop an appropriate bounding box
based on the provided 2D hand pose ground-truth. Addition-
ally, we obtain the ground-truth hand vertices pose from
MANO (Romero et al. 2017a) pose coefficients of DexYCB
through the MANO layer facilitated by Manopth (Hasson
et al. 2019a).

4.3.2 Training setup

We utilize the weight of ResNet-34 (He et al. 2016) pre-
trained on ImageNet (Deng et al. 2009) as our backbone.
We trained 50 epochs in an end-to-end manner for the Frei-
HAND. For the DexYCB, we used the pre-trained weights
with 10 epochs on FreiHAND for regularization. It demon-
strated better performance than training on DexYCB alone at
preliminary experiments. For generalization, we also verified
cross-train setup of two datasets. In this setup, the model has
trained 5 epochs with only FreiHAND and cross-trained for
45 epochs using a batch configuration distributed based on
the dataset sizes’ ratio. We use AdamW solver (Loshchilov
and Hutter 2017) with a batch size of 64, initial learning rate
of 3e—4, and the rest are set to default value(g, of 0.9, f,
of 0.999, and weight decay of 1e—2). For hyperparameters,
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we set the image input resolution to 256 X 256, the channel
dimension of feature map c to 512, and the size of the belief
map and heatmap n,, n,, to 32 and 64, respectively.

Since the proposed HMD framework includes an image
compression process, we apply an additional process during
the training for the model integrated into the HMD frame-
work. Details of image compression will be described in the
section below. Dodge and Karam (2016) report that jpeg
image compression does not significantly affect the inference
performance of various networks. Nevertheless, to remove
minor adverse effects, we forced image quality degradation
by compressing the portion of image sets through random
sampling. The sampling and compression ratios are set to
0.2 and 50%, respectively.

4.3.3 HMD system configuration

The proposed HMD application with Hololens2 is imple-
mented in a server with an AMD Ryzen 9 7950X 16-Core
CPU@4.50GHz, 64GB of RAM, and an Nvidia GeForce
RTX 4090 GPU. The server is also utilized for training and
evaluation of the network. The Wi-Fi specification is 5 G
wireless, theoretically communicating data at up to 867
Mbps. As a result of measuring network quality, the upload
speed of Wi-Fi is 122.21 Mbps, and the download speed is
50.23 Mbps.

4.4 Quantitative results

FreiHAND For the FreiHAND, we follow existing
works (Boukhayma et al. 2019; Chen et al. 2021b, 2022a;
Choi et al. 2020; Hasson et al. 2019b; Kulon et al. 2020;
Lin et al. 2021a; Moon and Lee 2020; Zheng et al. 2021;
Zimmermann et al. 2019) to conduct a comprehensive

Table 1 Comparisons with state-of-the-art on FreiHAND

comparison with our method. Quantitative results with the
official test set of Frei(HAND are summarized in Table 1.
Since FreiHAND is non-sequential, we assumed all previ-
ous poses to be zero-valued in our method. Despite this, our
results are comparable to the state-of-the-art performance
shown by the baseline method (Zheng et al. 2021). In other
words, our method demonstrated notable accuracy even in
the absence of temporal information, indicating its robust-
ness in scenarios such as re-initialization due to tracking fail-
ure. While our findings demonstrate superior performance in
terms of framerate compared to existing methods, it would
be unfair to directly compare them to approaches that utilize
less powerful GPUs. Therefore, we additionally report fram-
erates on our hardware setup(") if available.

In the case of MobRecon (Chen et al. 2022a), we referred
to the results of the DenseStack backbone, which simul-
taneously reported performance and speed among various
network settings. Since the result is tested on an Apple A14
CPU, we report the model’s performance speed within our
hardware setup("). Lin et al. (2021a), a transformer-based
method, showed performance close to state-of-the-art, but
inference speed of slow due to the heavy HRNet (Wang
et al. 2020b) and transfomer (Vaswani et al. 2017) adopted
as encoder and decoder, respectively. Referring to Fig. 5, our
method achieves nearly state-of-the-art performance in 3D
PCK and performs better from an error threshold of 10 mm
or higher. We also report the performance of our cross-
trained model for real-time demo in Table 1, which shows
relatively low performance, but still comparable. Regarding
the generalization performance, which is its primary purpose
of cross-training, the model exhibits better performance in
our environment. A related result is shown in Fig. 9.

DexYCB For the Dex YCB with official split SO test set, we
compare our method with existing works (Chao et al. 2021;

Method MPJPE(l) AUC;(1) MPVPE () AUC, (1) F@5mm () F@ISmm (1) FPS (1)
ICCV19-MANO Fit (Zimmermann et al. 2019) 137 0.730 13.7 0.729 0.439 0.892 -
ICCV19-Hasson et al. (2019b) 13.3 0.737 13.3 0.736 0.429 0.907 -
ICCV19-MANO CNN (Zimmermann et al. 2019)  10.9 0.783 11.0 0.783 0.516 0.934 -
CVPR20-YoutubeHand (Kulon et al. 2020) 8.4 0.834 8.6 0.830 0.614 0.966 -
ECCV20-12L-Mesh (Moon and Lee 2020) 74 - 7.6 - 0.681 0.973 53
ECCV20-Pose2Mesh (Choi et al. 2020) 7.7 - 7.8 - 0.674 0.969 8
CVPR23-Yu et al. (2023) 73 - 7.3 - - - -
CVPR21-Chen et al. (2021b) 6.9 0.863 7.0 0.861 0.715 0.977 64
CVPR22-MobRecon (Chen et al. 2022a) 6.9 - 72 0.856 0.694 0.979 67/93
CVPR21-Lin et al. (2021a) 6.8 - 6.7 - 0.717 0.981 18
ISMAR21-Zheng et al. (2021) 6.5 0.871 6.7 0.867 0.722 0.982 109
Ours 6.5 0.870 6.7 0.866 0.723 0.981 140
Ours* 8.6 0.829 8.5 0.830 0.611 0.967 140

*Denotes cross-trained model for HMD. The previous pose for our method is all set to zero-value, as the FreiHAND is non-sequential
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3D PCK with Aligned vertices (FreiHAND)
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Fig.5 Comparison of 3D PCK on FreiHAND

Chen et al. 2022b; Li et al. 2021; Lin et al. 2023; Spurr et al.
2020; Tse et al. 2022; Xu et al. 2023) that utilize monocular
input as ours. Since DexYCB is a sequential dataset and
does not provide ground-truth for vertices, we compute only
hand joint accuracy and MKA. As shown in Table 2, the
proposed method demonstrates superior computational effi-
ciency compared to other methods. Recent studies evaluated
with DexYCB (Chen et al. 2022b; Li et al. 2021; Lin et al.
2023; Tse et al. 2022; Yu et al. 2023) all aimed at the simul-
taneous reconstruction of hands and objects, so real-time
performance is not guaranteed. Among the existing studies,
the most recent work, H20Net (Xu et al. 2023) shows a
significant improvement in accuracy compared to previous
works. However, H2ONet leverages the substantial assump-
tion that hand pose transformation remains rigid across
nearby frames. Since DexYCB consists of a sequence of
fixed hand poses after grasping an object, the assumption is
suitable for the dataset and leads to significant performance

improvement. However, it is not applicable in real-world
scenarios. Moreover, this method only achieved marginal
real-time performance, making it unsuitable for applica-
tions involving HMDs. Lin et al. (2023) also showed high
performance, but the computation speed is not reported as
a method consisting of a heavy network backbone with a
self-attention layer. The proposed method prioritizes notably
superior speed over optimal accuracy, which offers signifi-
cant advantages for HMD-based frameworks. These frame-
works must account for not only the inference speed of the
model but also other factors, such as pre/post-processing
and communication speed. A comprehensive analysis of the
MKA value will be provided in Sect. 4.6, as limited compa-
rable research findings available.

We perform experiments for four distinct split sets to vali-
date the model’s generalization performance across various
criteria. However, there is a limited number of cases where
results for all DexYCB split sets have been reported, result-
ing in a relatively small comparison group. Referring to
Table 3, all split sets, except for S1, achieved state-of-the-
art performance in quantitative metrics. A notable observa-
tion is that when evaluating unseen viewpoints using the
S2 split, the model’s performance exceeded the default
split’s, and it performed less when testing the S1 split with
unseen subjects. This difference may be attributed to the
initial training with FreiHAND, which facilitated learning
across all camera perspectives but had less effect on gener-
alizing subject-related aspects. Consequently, the proposed
system’s performance is not solely dependent on dataset size
and demonstrates superior generalization capabilities across
different criteria such as subjects, viewpoints, and grasping
scenarios.

Performance on Hololens2 In the proposed offload-
ing framework, we evaluated the average latency for each
step, as shown in Fig. 6. The process involved 10.23 ms for
transmitting images from Hololens 2 to the server, 3.56 ms
for preprocessing, 7.21 ms for TE-GCN inference, 0.13 ms
for post-processing, and finally, 8.04 ms for returning hand

Table 2 Comparisons with

state-of-the-arts on DexYCB Method MPIPE 1 AVE M MKA© P
ECCV22-Chen et al. (2022b) 19.00 - - -
ECCV20-Spurr et al. (2020) 17.34 0.698 - -
CVPR22-Tse et al. (2022) 16.05 0.722 - -
CVPR22-Li et al. (2021) 12.80 - - -
CVPR23-Yu et al. (2023) 8.92 - - -
CVPR21-Chao et al. (2021) 6.83 0.864 - -
CVPR23-Lin et al. (2023) 5.47 - - -
CVPR23-H20Net (Xu et al. 2023) 5.30 0.894 - 35
Ours 5.81 0.884 5.197 140
Ours* 5.94 0.881 5.482 140

*Denotes cross-trained model for HMD

@ Springer



143 Page 12 0f 18

Virtual Reality (2024) 28:143

Table 3 Comparison of official
split types of DexYCB based on

Method

SO (sequences)

S1 (subjects) S2 (views) S3 (grasping)

MPJPE(mm) ECCV20-Anil et al. (Armagan
et al. 2020)

CVPR22-Tse et al. (2022)

Ours

Ours*

17.34

16.05
5.81 7.08 5.51 6.50
5.94 6.94 5.54 6.60

22.26 25.49 18.44

21.22 27.01 17.93

* denotes cross-trained model for HMD

Bold values denote the best performance for each aspect

Device Server
® ®

Image
Capture

RGp
Iny.
Mage 10.23 ms

Pre-process 3.56 ms
29.17 ms
(34.3 FPS)

Inference 7.21 ms

Post-process i 0.13ms

8.04 ms

Rendering ¥ g.

Fig.6 Diagram of the latency for each step within our HMD-Server
offloading framework

pose to Hololens 2. Thus, a total of 29.17 ms is required to
process a single image. Since we processed the latest image
received on the server, the framerate perceivable by users
remains consistent with the reported latency at 34.3 FPS.
Furthermore, additional experiments showed that WiFi spec-
ifications and connection environment directly influence data
transmission and reception latency. Hence, it is expected that
the overall framerate of the proposed module will increase
in the future with improved communication environments.

4.5 Qualitative results

We collect challenging cases in Fig. 7, which include cases
of significant self-occlusion or object occlusion. The results
for both datasets exhibit robust joint and mesh predictions,
and some sequences show results that appear to fit better
visually than the ground-truth mesh. In Fig. 8, we present
some failure cases and notable successes to demonstrate the
detailed performance of our model. Our system struggles
with unnatural and artificial hand poses, excessive self-
occlusion, and ambiguous RGB input on depth, leading to
incorrect predictions. However, our model performs well in
cases where the hand is partially out of view, or the RGB
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input is blurred due to fast motion. These successful cases
are challenging to achieve using deterministic temporal
information utilization, indicating that our system performs
temporally adaptive pose regression without relying too
heavily on current or previous frames. Figure 9 shows the
sample results of the proposed system on HMD. We qualita-
tively evaluated the system by streaming RGB images from
Hololens2, estimating the hand information on the server,
and transferring the data to the HMD. We utilized a cross-
trained version of our model, which exhibited much better
generalization performance. Due to latency issues, mesh
rendering is performed only on the server for visualiza-
tion purposes. Since we used the default MANO right-hand
model, there are discrepancies in shape between the user’s
hand and the prediction model, resulting in an incorrect pose
at the root position or the edge of the hand. To address this
problem, we plan to implement online personalization of the
hand model in future work.

4.6 Ablation study

We report the ablation studies on DexYCB with major loss
components configuration in Table 4. We apply the same
training setup for the DexYCB described in Sect. 4.3.
Although the individual loss configurations did not have a
notable impact on MKA, the results with the full loss con-
figuration showed significantly lower MKA values. This
indicates that the proposed loss set contributes to temporal
coherence in a complementary manner, even when trained
without ground-truth previous pose information of Dex YCB.

To support our system design, we conduct a ablation
study with various factors on network design. Table 5
shows performance according to different backbones and
the number of stacked layers of adaptive-GCN. When using
the ResNet-18 backbone, the inference speed increased due
to the relatively light model, but the accuracy decreased due
to the simplified model complexity. We found that using two
stacked GCN layers resulted in better accuracy and speed,
and supposed that adding more layers increased the optimi-
zation difficulty.

Next, we evaluate the impact of each data type defined
in the Retroactive Data Generator on performance. Since



Virtual Reality (2024) 28:143 Page130f 18 143

Input Joint Mesh GT Mesh Input Joint Mesh GT Mesh

Failure Cases Challenging Cases
Fig. 8 Failure and challenging cases result in FreiHAND and DexYCB
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Fig.9 Visual results on Hololens2 viewpoint. The scene is captured on Hololens2, and hand mesh is rendered in the off-loaded server

Table 4 Ablation study on Loss components

Method MPJPE ({) AUC; (D) MKA ({)
Ground-truth - - 4.094
Land 6.17 0.877 5.643
Lrand + Lreight 5.89 0.882 5.666
Lana + Lim 5.83 0.883 5.667
Lrand + Lreignt + L 5.81 0.884 5.197

Ground-truth MKA is computed on DexYCB testset

Bold values denote the best performance for each aspect

Table 5 Ablation study of different backbones and GCN layer con-
figuration

Backbone GCN layer MPIPE (1) AUC, (1) MKA () FPS (1)
ResNet-18 2 5.94 0.881 5.406 187
ResNet-18 3 6.01 0.880 5.291 176
ResNet-34 2 5.81 0.884 5.197 140
ResNet-34 3 5.92 0.882 5.201 133

Bold values denote the best performance for each aspect

ground-truth data of the previous pose is required for the
non-RDG case, we perform training and testing only on
the DexYCB. The results are presented in Table 6; due to
the limitations of experimenting with all possible distribu-
tions while adjusting control variables, the reported results
are limited to a few selected ratio combinations. As the
influence of several variables acted simultaneously, mak-
ing it challenging to draw intuitive conclusions for each
variable individually. The MKA value shows the lowest
value in the case of rl1, where only the Static type from
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RDG is available. The result occurs as the network uni-
formly considers the current frame to be identical to the
pose of the previous frame, leading to rl displaying the
most temporally smooth outcomes, irrespective of pose
accuracy. The result from r2, comprising only perturbed
data, emphasizes the disparity between conventional
augmentation methods and our proposed RDG module.
It indicates that data augmented only with random noise
failed to effectively serve as the previous pose, resulting
in inadequate temporal coherence and accuracy.

Despite the complexity of various influencing factors,
through multiple experiments, the proposed system was
able to improve temporal smoothness by achieving the
highest pose estimation performance and the second-best
MKA value at the r0 ratio. It should be noted that temporal
smoothness is one aspect of the representable motion by
the proposed system. As shown in Table 1, it demonstrates
state-of-the-art performance even in non-sequential dataset
situations, i.e., re-initialization scenarios with no previous
pose.

We also examine the effect of image quality degradation
on the performance of our proposed system. As shown
in Table 7, the performance of the model significantly
decreases when the image compression is not considered
during training. On the other hand, when the model is
trained with quality-degraded images, it achieves a per-
formance close to the optimal case. This implies that the
model is trained to operate regardless of image quality
by degrading the partial training image set. As a result,
we can maintain the state-of-the-art performance of the
trained model while taking advantage of image compres-
sion in the HMD framework.
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Table 6 Ablation study of Static Perturbed Zero-value MPIPE AUC MKA
Retroactive Data Generator
wo/RDG - - - 10.374 0.79 9.692
rl 1.0 0.0 0.0 18.354 0.639 4.412
2 0.0 1.0 0.0 7.776 0.845 5914
3 0.0 0.0 1.0 6.022 0.880 5.409
r4 0.5 0.5 0.0 8.127 0.838 5.616
5 0.5 0.0 0.5 5.918 0.882 5.475
6 0.0 0.5 0.5 5.909 0.882 5.398
7 0.65 0.25 0.1 6.008 0.880 5.431
r8 0.45 0.35 0.2 5.926 0.882 5.353
9 0.2 0.45 0.35 5.939 0.881 5.317
Ours (10) 0.2 0.65 0.15 5.879 0.882 5.271
Each model is trained on the DexYCB only
Bold values denote the best performance for each aspect
Table 7 Ablation study of Compress.in Compress. MPIPE(})  AUC, (1) MPVPE ()  AUC, (1) MKA (1)
image quality degradation train in test
process for HMD framework
FreiHAND
No No 6.5 0.870 6.7 0.866 -
No Yes 8.1 0.840 8.2 0.836 -
Yes No 6.7 0.568 6.9 0.864
Yes Yes 6.7 0.866 6.9 0.862 -
DexYCB
No No 5.9 0.882 - - 5.271
No Yes 6.0 0.880 - - 6.654
Yes No 5.9 0.882 - - 5.108
Yes Yes 5.9 0.882 - - 5.395

Each model is trained on the target dataset only

Bold values denote the best performance for each aspect

5 Conclusion

We proposed a real-time novel hand-tracking system that
enables robust hand pose estimation under various real envi-
ronmental conditions and utilizes it in HMD as an offloading
framework. Our system consists of a 2-stage GCN-based
lightweight network that balances accuracy and real-time
performance. Furthermore, we have developed a novel
approach to incorporating temporal information via the
attention mechanism, which we have validated on recent
benchmark datasets. The proposed system achieves state-
of-the-art balanced performance in FreiHAND and DexYCB
and has demonstrated the importance of adaptive utilization
of temporal information for real-world scenarios. Moreover,
integrating our system into an HMD through the offloading
framework has expanded its potential for practical applica-
tions for any other mobile devices, and we have demon-
strated the model’s generalization performance.

Limitation One notable limitation is that the integrated
HMD system did not achieve a desirable level of runtime
speed. The primary factor contributing to increased latency
in the proposed HMD framework was preprocessing and
communication speed, which can be enhanced through sys-
tem optimization. Another limitation is the hand tracker’s
vulnerability when dealing with unseen subjects. We plan
to address this limitation by leveraging the system’s capabil-
ity to learn from various public datasets, irrespective of the
sequential nature of the data.

Future work Since we solely assessed the real-time per-
formance of the hand tracker on an HMD, our next step
involves implementing practical applications on HMDs and
conducting user studies to demonstrate the actual usability
and effectiveness for subjects. From a system perspective,
our plan is to delve into advanced methods that leverage
temporal information and employ self-supervised learning
approaches, aiming to enhance the overall generalizability
of the system.
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