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Abstract
We propose a robust 3D hand tracking system in various hand action environments, including hand-object interaction, which 
utilizes a single color image and a previous pose prediction as input. We observe that existing methods deterministically 
exploit temporal information in motion space, failing to address realistic diverse hand motions. Also, prior methods paid 
less attention to efficiency as well as robust performance, i.e., the balance issues between time and accuracy. The Temporally 
Enhanced Graph Convolutional Network (TE-GCN) utilizes a 2-stage framework to encode temporal information adaptively. 
The system establishes balance by adopting an adaptive GCN, which effectively learns the spatial dependency between hand 
mesh vertices. Furthermore, the system leverages the previous prediction by estimating the relevance across image features 
through the attention mechanism. The proposed method achieves state-of-the-art balanced performance on challenging 
benchmarks and demonstrates robust results on various hand motions in real scenes. Moreover, the hand tracking system 
is integrated into a recent HMD with an off-loading framework, achieving a real-time framerate while maintaining high 
performance. Our study improves the usability of a high-performance hand-tracking method, which can be generalized to 
other algorithms and contributes to the usage of HMD in everyday life. Our code with the HMD project will be available at 
https://​github.​com/​UVR-​WJCHO/​TEGCN_​on_​Holol​ens2.
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1  Introduction

With the rise of Augmented/Virtual Reality(AR/VR) 
and the commercialization of various Head Mounted 
Displays(HMD), a volume of research for visually under-
standing human behaviors, especially hands, is being con-
ducted to provide a better experience to users (Han et al. 
2020). It has been reported that a certain level of accuracy 
and efficiency has been reached for a single hand  (Lepetit 
2020). However, the problem of understanding human 
hands in various situations is still an active topic, including 
hand-object interactions. Recently, studies in the field have 
been focusing on utilizing RGB input due to the accessi-
bility of RGB cameras and goes beyond simply estimating 
3D joint information; they reconstruct a dense hand mesh 
for its usability in applications (Chen et al. 2022b, 2023; 
Hasson et al. 2019b, 2020, 2021; Kulon et al. 2020; Lin 
et al. 2021a, 2023; Ren et al. 2023; Yu et al. 2023; Zuo 
et al. 2023). However, while the studies focus on accuracy 
in various situations, they often fail to guarantee real-time 
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performance and temporal coherence, which is crucial for 
real-world applications.

Few studies (Chen et al. 2022a; Moon and Lee 2020; 
Park et  al. 2020a, b; Tang et  al. 2021; Xu et  al. 2023; 
Zheng et al. 2021) have considered limited computational 
resources and attempted to achieve state-of-the-art perfor-
mance while ensuring real-time conditions. They proposed 
a method using a light-weight network structure (Moon 
and Lee 2020; Xu et al. 2023), adaptive Graph Convolution 
Network(GCN) (Zheng et al. 2021), additional sensors (Park 
et al. 2020a, b), or a mobile-friendly pipeline that does not 
require GPU setup (Chen et al. 2022a). For temporal coher-
ence, recent studies investigate temporal cues from past and 
future information based on sequential models (Cai et al. 
2019; Chen et al. 2021a; Fu et al. 2023; Han et al. 2020; 
Kocabas et al. 2020; Ye et al. 2023) or adopt global fea-
tures in a single view as a non-sequential model (Chen et al. 
2022a). Overall, the existing methods utilize temporal infor-
mation mainly as a constraint to penalize the current pre-
diction or estimate the pose candidate by extracting motion 
information such as optical flow. However, we have observed 

that these methods utilize temporal information rather deter-
ministically, relying on a constant motion model. Thus, we 
intend to explore a method that adaptively utilizes temporal 
information to cover realistic hand motion aspects (Fig. 1).

Moreover, several remaining issues must be addressed to 
apply the findings of hand-tracking research to AR devices. 
To ensure reliable performance in various situations, it is 
essential to have access to a significant amount of computa-
tional resources, such as a GPU. Also, from an implemen-
tation standpoint, there is a potential problem: individual 
hardware characteristics differ between AR devices, such as 
the Hologram Processing Unit(HPU) of the Hololens2 and 
the Qualcomm Snapdragon XR2 processor of the Oculus 
Quest 2 developed by Meta. Therefore, we determined that 
a system incorporating an off-loading framework is neces-
sary to leverage standard GPU resources, irrespective of the 
hardware specifications of different AR devices.

Through these inspirations, we aim to develop a fast 
hand-tracking system assisted by adaptive temporal cues 
and integrate the proposed system on AR HMD through the 
off-loading framework to verify the effectiveness of the sys-
tem in realistic scenarios where hands interact with objects 
(Fig. 2). To achieve our goal, we focus on three main points 
for the hand pose estimation system: First, we leverage GCN 
which is capable of establishing relationships between the 
vertices of a hand mesh. Previous studies have demon-
strated the significance of GCN-based systems in accuracy 
and efficiency by adeptly retaining the structure of the hand 
mesh while capturing attention between vertices. Tang 
et al. (2021) utilized GCN to refine a rough mesh by incor-
porating local and global features, while Zheng et al. (2021) 
proposed a system based on adaptive-GCN that enables 
spatial-aware regression, which has been adopted for our 
system. Second, adaptive temporal information utilization 
is suitable for real-world behavior aspects. As mentioned, 

Fig. 1   Visualization of reconstructed hand mesh with our method 
from Hololens2 RGB input. The hand mesh is rendered in the off-
loaded server

Fig. 2   Schematic of proposed system
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most previous works utilizing temporal information assume 
a constant position or constant velocity model to generate 
stable predictions. However, there are cases where a specific 
motion model 	  cannot be applied, such as fast-moving 
or hand-shifting moments or HMD users’ head movement 
that significantly changes the hand position with respect 
to the camera view. To address this issue, we propose the 
pose-attention encoder, which determines the proportion of 
previous prediction information to be utilized. The module 
generates a weighted feature by estimating the relevance of 
hidden states, such as the current image feature and previous 
pose feature, which is motivated by an attention mechanism. 
Third, the trainable dataset category is expanded by intro-
ducing a retroactive data generator(RDG). The availability 
of sufficient high-quality datasets is a critical factor affect-
ing the performance of learning-based methods. However, 
prior approaches incorporating temporal information relied 
on sequential datasets, typically comprised of real-world 
video sequences, leading to a more constrained hand pose 
space than synthetic and non-sequential datasets. Hence, we 
introduced an RDG that generates a distributed augmented 
pose, effectively simulating the previous pose by constrain-
ing the extent of the common augmentation procedure and 
categorizing the data type. The approach enables the training 
of temporal information regardless of the sequentiality of the 
dataset (Fig. 3).

We train and evaluate our hand tracking system on the 
FreiHAND, DexYCB dataset and demonstrate our complete 
system on Hololens2 with the off-loading framework. Our 
system verifies state-of-the-art performance and reliable 
results on HMD. The integrated application on HMD will 
be made publicly available.

Our main contributions are summarized as follows: 

1.	 Propose a novel approach for adaptive temporal informa-
tion utilization suitable for realistic hand behavior.

2.	 Real-time 3D hand reconstruction system capable of 
learning temporal information regardless of the specific 
characteristics of the dataset.

3.	 Implement a scalable framework that leverages a distrib-
uted offloading system on an HMD.

2 � Related work

Our target domain is the reconstruction of 3D hand poses 
and meshes using monocular RGB images captured from an 
egocentric viewpoint, including sequences that involve inter-
actions with objects. In this section, we will review recent 
studies on 3D hand pose and mesh estimation from RGB 
input. Most of these studies are not limited to hand-only 
sequences and verified with public hand-object datasets. We 
will then discuss recent advances in GCN directly relevant 

to our research and summarize how temporal information is 
utilized in the pose estimation problem.

2.1 � 3D hand pose and mesh estimation from RGB

The current state-of-the-art hand pose and mesh estimation 
is dominated by deep learning-based approaches, which 
can roughly divide into generative and discriminative 
approaches.

Generative approaches regress the pose and shape 
coefficients of the parametric hand model, typically 
MANO (Romero et al. 2017a), as a differentiable layer in the 
network. Recent works (Cao et al. 2021; Chen et al. 2022b; 
Hasson et al. 2019b, 2020; Wang et al. 2020a) propose the 
work with an autoencoder  (Kingma and Welling 2013), 
which combines an image feature encoder and a model 
parameter decoder. Additional supervision is often applied 
using the feature extracted in the intermediate step, such 
as segmentation map, projected 2D keypoints, etc (Baek 
et al. 2019; Boukhayma et al. 2019; Chen et al. 2021c; Lin 
et al. 2023; Zhang et al. 2019b, 2021; Zhou et al. 2020). 
Among these works, Baek et al. (2020) introduce an end-
to-end trainable system utilizing various data sources from 
hand-only and hand-object domains through a domain adap-
tion using Generative Adversarial Network. In studies that 
presented various benchmark datasets, regressing the coef-
ficients of this parametric hand model is used as the baseline 
method (Hampali et al. 2020; Zimmermann et al. 2019). Few 

Fig. 3   2D t-SNE visualization of 1000 FreiHAND samples. Each 
frame has a distinct hand pose, as the dataset is non-sequential. We 
generate a synthesized previous pose from the ground truth of the 
current pose within the adjusted distribution of pose space from RDG
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works proposed a semi/self-supervised framework based on 
the autoencoder (Liu et al. 2021; Tu et al. 2022) and neu-
ral rendering-based optimization system (Qu et al. 2023). 
As the prior information on hand shape is embedded in a 
parametric model, it is relatively less dependent on train-
ing data, and plausible hand pose can be expected in vari-
ous environments. However, since hand pose and shape are 
generated with a few parameters, the expressable pose space 
is limited, and fitting the coefficients is challenging due to 
the nonlinearity of the model parameters. To overcome the 
limitation, we adopt a discriminative approach that regresses 
the coordinates of the mesh or joint without relying on a 
fixed hand model.

The discriminative approach can be classified based on 
whether the objective is a joint or a mesh vertex and whether 
the pose coordinates are directly regressed or regressed as 
a heatmap. In the case of directly regressing the hand joint, 
various studies based on autoencoders have been introduced 
to effectively learn latent space from RGB images (Spurr 
et al. 2018; Yang and Yao 2019; Yang et al. 2019). Due to 
the rich information and usability of mesh, regression for 
each vertex of the hand is also studied, and most of these 
approaches adopt a GCN or a transformer (Chen et al. 2021b; 
Ge et al. 2019; Kulon et al. 2020; Lin et al. 2021b). Further-
more, non-direct regression approaches to target coordinates 
have also been proposed. Zimmermann et al. (Zimmermann 
and Brox 2017) proposed estimating a 2D heatmap for each 
joint using a Convolutional Pose Machine (Wei et al. 2016) 
and lifting it to a 3D pose. Iqbal et al. (2018) and Mueller 
et al. (2018) have demonstrated that the regression approach 
of the 2.5D representation, which consists of a 2D heatmap 
and a relative depth map of the hand, is more effective than 
direct-coordinate regression. Subsequent studies adopt the 
framework and indicate promising results (Fan et al. 2021; 
Spurr et al. 2020). Moon et al. (2020) introduced a method 
for estimating 1D heatmaps per axis for each human body 
mesh vertex, including the hand. As such, estimating a 2.5D 
dense heatmap for each mesh vertex has attracted attention 
to perform effective mesh reconstruction (Moon et al. 2020; 
Yang et al. 2021; Zheng et al. 2021). Recent studies have 
also presented promising results in 3D shape reconstruction 
using Signed Distance functions(SDFs) (Chen et al. 2022b, 
2023; Ye et al. 2023). Since the discriminative method gen-
erally adopts a single-frame prediction pipeline, a jittery pre-
diction issue occurs. Also, as the method is highly depend-
ent on the training dataset, there is a risk of overfitting and 
encountering a generalization problem.

Most of the studies mentioned above do not satisfy the 
real-time condition as they primarily focus on improving the 
accuracy of the proposed method. Recently, the balancing 
issue between accuracy and efficiency has been raised for 
the practical application of hand pose estimation. To achieve 
real-time performance, several works have rigorously 

designed lightweight networks  (Lim et al. 2020; Kulon 
et al. 2020; Moon and Lee 2020; Xu et al. 2023; Zheng et al. 
2021; Zhou et al. 2020). MobRecon (Chen et al. 2022a) pro-
posed a system that requires minimal computing resources 
with mobile-friendly lightweight stacked structures and a 
novel feature lifting module. Tang et al. (2021) developed 
an efficient multi-stage framework and mesh refinement 
using GCN, which satisfies both high accuracy and real-
time conditions. Some approaches focus on formulating an 
efficient loss function for joint optimization or integrating 
specific constraints to achieve the goal. Zhang et al. (2019a) 
proposed a unified framework combining LSTM with hand 
and object joint optimization processes and constructing 
an efficient system by carefully designing mesh-related 
losses. Kulon et al. (2020) applied a decoder based on spa-
tial mesh convolutions and utilized a simple loss function 
for mesh reconstruction. H2ONet (Xu et al. 2023) achieved 
high performance by decoupling the reconstruction pipe-
line into lightweight structures but adopted scenario-specific 
assumptions.

We focus on the 2.5D heatmap regression approach, tar-
geting hand vertices, and construct a pipeline with a module 
capable of adaptively utilizing temporal information. Fur-
thermore, we achieved high mesh reconstruction accuracy 
by designing a GCN-based efficient network while maintain-
ing real-time performance. Our method has been success-
fully utilized in real application scenarios with users wearing 
an AR HMD.

2.2 � Graph‑convolution network based pose 
estimation

Due to the ability to reflect the structural characteristics of 
the hand or body in the form of a graph, the approach based 
on the graph convolution network has been steadily gaining 
attention in the pose estimation problem. GCN can be clas-
sified into spectral domain (Bruna et al. 2013; Defferrard 
et al. 2016; Kipf and Welling 2016) that performs convolu-
tional operation with Fourier transformation, and a spatial 
domain (Gilmer et al. 2017; Monti et al. 2017; Xu et al. 
2018) that outperforms in the field of pose estimation by 
expanding the spatial definition of a convolution.

In the spectral domain, some works utilize GCN to recon-
struct a hand or body mesh in a coarse-to-fine way (Choi 
et  al. 2020; Ge et  al. 2019). Further, the coarse-to-fine 
scheme has extended in a spatial domain based on a simple 
encoder-decoder architecture (Chen et al. 2021b; Kulon et al. 
2020). Lin et al. (2021a) improved the regression accuracy 
by modeling global vertex-vertex interaction using a trans-
former (Vaswani et al. 2017). Tse et al. (2022) proposed a 
hand reconstruction system based on attention-guided graph 
convolution, which can capture dynamic mesh information. 
In the two-hand reconstruction domain, Li et al.  (2022) 
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proposed a pyramid image feature attention module to cap-
ture local and global patch attention simultaneously. Zheng 
et al.   (2021) pointed out that the initial feature graph-
building process used in previous studies caused a loss of 
spatial information and introduced a framework including a 
spatial-aware graph-building method. Our study adopted this 
framework due to the simplified structure and efficiency of 
the lightweight regression module.

2.3 � Temporal coherence on pose estimation

Recent works attempt to satisfy hand pose coherence over 
time by utilizing temporal information since the prediction 
of the previous frame includes a dense queue for the cur-
rent frame’s pose. To propagate temporal information across 
frames, one approach suggested in a study  (Hossain and 
Little 2018) involves employing a sequence-to-sequence 
model, while another study  (Cai et al. 2019) introduces the 
use of a spatial-temporal graph. Video input is also utilized 
to exploit temporal features (Cai et al. 2019; Chen et al. 
2021a; Fu et al. 2023; Kocabas et al. 2020; Ye et al. 2023; 
Zhao et al. 2021), but in this case, a frame-to-frame real-time 
operation is not feasible due to the heavy structural system or 
the necessity of future information. Han et al. (2020; 2022) 
demonstrate an integrated hand-tracking system within the 
Oculus Quest VR headset, utilizing the available inputs that 
depend on the hardware and proposed a regression network 
using tracking history. Chen et al. (2022a) design a feature 
lifting module utilizing a global receptive field for tempo-
ral coherence in a single-view method that does not rely 
on sequential information. Yang et al.  (2020) introduce a 
technique for synthetically generating extensive sequential 
datasets to utilize the temporal motion information of the 
hand. In contrast, our approach presents acquiring temporal 
information from pre-existing non-sequential datasets.

Our critical insight is that adaptive utilization of tempo-
ral information enables robust pose prediction possible via 
imitating realistic hand motion aspects. In contrast, previous 
studies targeted temporal coherence, an effective indicator 
when assuming a constant position/velocity model. It pro-
vides significant stability of the predictions for datasets in a 
controlled environment but does not cover unintended hand 
motions from a real user. Therefore, we propose a pose-
attention encoder to address this limitation by estimating 
the feature-level relevancy of the current image and previ-
ous pose.

3 � Method

Our goal is to propose a hand tracking system in HMD by 
estimating a set of hand pose joints jt ∈ ℝ

21×3 and mesh 
vertices vt ∈ ℝ

N×3 in 3D space with N vertices for current 

frame t, given an input RGB image It ∈ ℝ
h×w×3 and joint 

pose prediction from the previous frame jt−1 . To fully utilize 
the given information, we designed a two-stage structured 
approach. In the first stage, we extract a feature map from the 
input image and estimate coarse pose through adaptive-GCN 
based module. In the second stage, we refine the prediction 
by using the regressed coarse pose and the adaptive temporal 
pose feature induced from the latent feature map in the inter-
mediate stage and the information of the previous frame. 
In the following, we will describe the details of each stage.

3.1 � Coarse pose estimation

3.1.1 � Initial graph building

The first coarse estimation step is based on the one proposed 
by Zheng et al. (2021). The input image I passes convolu-
tion blocks to extract the image feature map fimage ∈ ℝ

nf×nf×c 
with a feature size nf  and dimension of c. During the ini-
tial feature extraction process, the latent feature map 
flatent ∈ ℝ

nb×nb×21 with a feature size of nb is generated and 
fed into the pose-attention encoder for the dense estimation 
step. The initial feature graph G0 ∈ ℝ

N×(c+3) is constructed 
by initial graph building module SAIGB from  (Zheng et al. 
2021), while 0 indicates the stage 0. It uniformly distributed 
each portion of the feature map to every vertex of the fea-
ture graph and concatenated template coordinates of each 
vertex from a parametric hand model MANO (Romero et al. 
2017b). It has been shown that the approach significantly 
improves network performance by effectively transferring 
the extracted spatial information.

3.1.2 � Adaptive GCN‑based coarse regression

In the coarse pose estimation step, temporal information is 
not utilized to leverage the discriminative method’s strength, 
which is highly effective in single-shot detection. Therefore, 
the first pose regression is based solely on the image features 
extracted from the initial graph building. The graph convo-
lution operation to regress the vertex interactions can be 
represented as below refer to  (Doosti et al. 2020):

where � is the activation function, Ã ∈ ℝ
n×n is the row-nor-

malized adjacency matrix per graph with n nodes, and W 
is the trainable weights matrix, i indicates the stage of the 
system. As shown in  (Zheng et al. 2021), a trainable adja-
cency matrix Ã that is initialized with the identity matrix 
effectively constructs the vertex interactions and allows the 
capture of flexible range dependencies. We stack two layers 
of adaptive-GCN with a LeakyReLu and Dropout consider-
ing the balance of performance and computation speed. The 

(1)Ĝi = 𝜎(ÃGiW)
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ablation study in Sect. 4.6 proves that the designed module 
shows the best performance improvement without compro-
mising real-time operating conditions.

3.1.3 � 2.5D pose representation

Previous studies  (Iqbal et al. 2018; Moon and Lee 2020; 
Zheng et al. 2021) on various pose regression problems indi-
cate that predicting the target in the form of a belief map, 
rather than directly estimating the target coordinate, 
improves the accuracy of the estimation. Following 
the  (Iqbal et al. 2018), we apply spatial softmax normaliza-
tion and Hadamard product to the latent feature map from 
the last layer of GCN to generate a 2.5D belief map 
h0
v
, d0

v
∈ ℝ

nb×nb×N , where hv indicates a 2D belief map and dv 
is a relative depth map, each with the belief map size nb . For 
dense estimation, a 2.5D belief map h0

j
, d0

j
∈ ℝ

nb×nb×21 is 
extracted through fully connected layers, which includes 
compressed information on hand pose.

3.2 � Dense pose estimation

In contrast to Zheng et al. (2021), the baseline for the coarse 
estimation step, our network is engineered to adaptively lev-
erage temporal information to handle various hand move-
ment scenarios. Specifically, in cases where the current hand 
pose is similar to the previous pose and the hand moves 
gradually, the network intensively utilizes information from 
the previous prediction. On the other hand, in cases where 
there is a significant difference in poses between frames, 
such as when the hand is moving quickly or undergoing 
rapid changes, the network prioritizes information from the 
current image instead of the previous prediction.

For this purpose, we introduced the pose-attention 
encoder(PAE), which takes the previous frame’s pose heat-
map h̃2.5D and the input image’s latent feature map flatent 
to estimate the pose-attention weight �a . This weight is 
designed to indicate how much the network should focus 
on prior pose information. The PAE allows the network 
to selectively utilize the previous pose information while 
learning discriminative features between the image and 
pose in the embedded space. The weighted previous pose 
heatmap and 2.5D belief maps of joints extracted from 
coarse prediction are then fed into the distinct GCN mod-
ule to regress the final dense pose/mesh j1 , v1 , where 1 
indicates stage 1. To fully utilize given resources, we 
develop a Retroactive Data Generator(RDG) applied only 
for the training process, which produces data that can be 
interpreted as a ground-truth hand pose of the previous 
frame in any dataset. The module allows us to generate 
valuable temporal data that resembles a real-world envi-
ronment. Thus, the RDG directly contributes to improving 

the generalization performance of the network. The fol-
lowing sections will provide a detailed description of each 
module in the order of their operation within the system.

3.2.1 � Retroactive data generator

Based on the insight that the previous pose does not neces-
sarily have to match the true previous pose precisely, we 
developed a limited range of augmented poses, termed ret-
roactive data, treated as the ground-truth for the previous 
pose. To fulfill the intended purpose of generated data, we 
carefully design the existing augmentation process; instead 
of a random pose generator role, we propose a module 
capable of representing the distribution of previous poses 
observed in real-world scenarios. However, directly feed-
ing only the retroactive data as the previous pose to the 
model was found to lead to learning a dependency on the 
previous pose. To mitigate this, we set RDG to results 
poses with a value of 0, thus enhancing the realism of 
the previous pose dataset. By including a zero-value pose 
that significantly deviates from the actual previous pose, 
the subsequent PAE phase avoids simply depending on 
the previous pose. Instead, it recognizes the possibility 
of incorrect values and selectively utilizes the provided 
RDG data based on the assessed importance of the previ-
ous pose data. Thus, RDG can induce a robust predic-
tion result even in the absence of a previous pose, which 
contributes to re-initialization due to intermittent tracking 
failure. Furthermore, a notable advantage of synthesizing 
the previous pose is the ability to assess the quantitive 
similarity between the previous and current poses. Accord-
ingly, we derived the attention weight from the RDG and 
incorporated it into the subsequent stages as a metric indi-
cating the degree of attention that should be allocated to 
the previous pose.

We categorized the generated pose data into three types: 
static, perturbed, and zero-value. The static type refers to 
generating previous pose data identical to the ground-truth 
current pose, while the perturbed type involves adding 
noise to the current pose. We conducted an ablation study 
to evaluate the impact of each data type and the performance 
based on the distribution ratio of each type. Regarding the 
perturbed type, we apply normal-distributed noise indepen-
dently to the entire hand and each joint. This combination of 
global and local translation leads to realistic data augmenta-
tion. We generate a raw 2.5D pose heatmap h̃2.5D ∈ ℝ

nh×nh 
from the augmented 2.5D joint pose by assigning a rela-
tive depth value to the 2D pixel location of each joint with 
heatmap size nh . Also, a 2D Gaussian kernel is applied for 
a plausible heatmap representation. With the sampled type 
and generated noise, we compute the ground-truth attention 
weight 𝜔⋆ as follows:



Virtual Reality          (2024) 28:143 	 Page 7 of 18    143 

� denotes latent weight in range � ∈ (0, c) due to the pose 
type, c is a constant value manually set to 10. The equation 
yields 𝜔⋆ , which equals 1 when the previous pose is identi-
cal to the ground-truth of the current frame, approaches 0 as 
the magnitude of the applied noise grows, and becomes 0 in 
the case of a zero-value pose. In the inference, a dense joint 
pose from the previous frame j1

t−1
 has transferred instead 

of generated pose from RDG, and only the raw 2.5D heat-
map generation process is performed. The organization and 
distribution of RDG data will be extensively discussed in 
Sect. 4.6. Notably, we do not distinguish between sequen-
tial and non-sequential datasets provided in the training pro-
cess. In all cases, the RDG receives the ground-truth pose 
of the current frame j⋆

t
∈ ℝ

21×3 as input and generates a 
raw 2.5D heatmap h̃2.5D and ground-truth attention weight 
𝜔⋆ as output.

3.2.2 � Pose‑attention encoder

The main purpose of the PAE is to estimate the relevance 
of the previous frame’s information compared to the cur-
rent frame’s image by extracting the attention weight �a . 
First, in order to generate a more realistic pose heatmap 
from the raw 2.5D heatmap h̃2.5D , a previous pose belief 
map ht−1 ∈ ℝ

nb×nb×21 is generated using a small convolu-
tional block that has the same resolution as the latent image 
feature flatent . Then, the attention weight �a is computed and 
multiplied to the previous belief map ht−1:

PAE performs a comparable function to previously sug-
gested attention-based modules as it updates the corre-
sponding hand pose feature with an attention-based input 
image feature. However, unlike existing systems that had 
to derive the correct hand pose directly from the image 
input, we require a pose feature only for refining the coarse 
pose, which plays a more indirect role. In general, existing 
attention-based modules such as a transformer require a sub-
stantial number of parameters and expensive computations, 
so we designed PAE rather explicitly. Using a configura-
tion that includes a depthwise separable convolution layer, 
a LeakyReLU activation layer, and a max pooling layer, 
we extract a single attention weight through a lightweight 
network. This approach takes into account both spatial and 
channel-wise features. We also tested with a network archi-
tecture based on transformers, drawing inspiration from Inta-
gHand (Li et al. 2022) and FastMETRO (Cho et al. 2022), 
which introduced GCN-based attention modules. Neverthe-
less, even though it yielded slightly lower performance, we 
observed a substantially reduced inference speed(84.3 FPS 

(2)𝜔⋆ = cos
(
𝜋

2
⋅

𝜔

c

)

(3)�aht−1 = PAE(Concat(ht−1, flatent))

for same setup in Table 1). Consequently, we opted for the 
explicit encoder structure that we currently employ.

3.2.3 � Refinement module

As indicated in Zheng et al. (2021), utilizing all the mesh 
vertex information estimated in the coarse pose estimation 
step is inefficient. Thus we use only per joint 2.5D belief 
maps h0

j
, d0

j
 for dense estimation. In the same way as coarse 

estimation, the SAIGB module is used, but in this case, the 
initial graph G1 is constructed by incorporating not only 
image features but also the output of coarse pose estimation 
and weighted belief map extracted from the previous 
prediction.

The final graph Ĝ1 estimated with Eq. 1, and 2.5D belief 
maps per vertex h1

v
, d1

v
 are extracted in the same way. Finally, 

the 2D location of the kth vertex of mesh v is computed with 
a weighted average of the 2D belief map h1

v
 , and the corre-

sponding depth is calculated as a summation of the relative 
depth map d1

v
 . We denote Ω as the set of all pixel locations 

in the input image and each pixel location as p, then the 2D 
location of kth vertex uk, vk and relative depth dk is computed 
as below:

The training process of our system is conducted end-to-end. 
The coarse hand pose is estimated using only the image fea-
tures of the current frame, and the previous frame’s predic-
tion is adaptively utilized to refine the pose densely. This 
structure enables the production of temporally consistent 
poses as well as robust single-shot estimation. This system 
improves the user experience by providing low-jitter 3D 
hand poses and operates effectively in a real environment 
with complex hand motion aspects.

3.3 � Loss

We define the loss function in two configurations. Hand loss 
to minimize the discrepancy between the predicted hand 
mesh and ground-truth data, and Attention loss to induce 
the network to reflect the properties of real sequential data 
as we intended.

Hand Loss We apply the L1 norm between prediction and 
ground-truth of hand vertex and joints.

(4)G1 = SAIGB(Concat(h0
j
, d0

j
, flatent,�aht−1))

(5)(uk, vk) =
∑

p∈Ω

hv(p) ⋅ p

(6)dk =
∑

p∈Ω

dv(p)
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where vn and jn indicates a n th vertex and joint of the mesh, 
respectively; ⋆ denotes the ground-truth.

We also adopt the mesh smoothness term follow-
ing  (Chen et al. 2022a; Wang et al. 2018; Zheng et al. 2021), 
as it demonstrated promising results for mesh quality. The 
loss function for normal vector and edge length is defined 
as follows:

where C is face sets of mesh and nc indicates a unit normal 
vector of face c.

We iteratively apply the hand loss for each stage, so the 
total loss for hand is defined as:

where Lt represents the loss in stage t and �1 is set to 0.1 for 
scaling the normal loss term.

Attention Loss To transfer the previous pose information 
to the refinement module, we use a weighted feature map 
�aht−1 , which has the same resolution as the 2D belief map 
per joint h0

j
 , the output of coarse pose estimation. However, 

since we generate h̃2.5D from raw 2.5D joint jt−1 , it may con-
sist of a different distribution pattern than the pose distribu-
tion of the belief map generated through GCN. Therefore, 
we proposed a heatmap loss to induce the distribution of 
latent heatmap ht−1 to be similar to h0

j
 , only when the ground-

truth for the result of coarse pose estimation becomes identi-
cal to the previous pose data. In other words, we applied the 
L2 loss between heatmaps only when the attention weight 
w⋆ is 1.

This caused the refinement module to incorporate the previ-
ous frame’s pose information more effectively, and we veri-
fied the effect in the ablation study.

We use L2 norm for the attention weight wa from Pose-
attention encoder and ground-truth similarity w⋆.

(7)Lvert =

N∑

n=1

‖
‖vn − v⋆

n
‖
‖1

(8)Ljoint =

N∑

n=1

‖
‖jn − j⋆

n
‖
‖1

(9)Lnormal =
∑

c∈C

∑

(i,j)∈c

‖‖
‖
‖
‖
‖
‖

vi − vj

‖
‖
‖
vi − vj

‖
‖
‖2

⋅ n
⋆

c

‖
‖
‖
‖
‖
‖
‖

(10)Ledge =
∑

c∈C

∑

(i,j)∈c

‖‖‖
‖‖‖
vi − vj

‖‖‖2
−
‖‖‖
v⋆
i
− v⋆

j

‖‖‖2
‖‖‖

(11)Lhand =

T∑

t=1

L
t

vert
+L

t

joint
+ �1 ∗ L

t

normal
+L

t

edge

(12)Lhm =
‖‖
‖
h0
j
− ht−1

‖‖
‖
, only if w⋆ = 1.0

Thus the total loss for the Pose-attention encoder is defined 
as:

�2 is set to 10 according to preliminary experiments.
We train our network for each dataset and report cross-

trained models utilized for real HMD applications. In all 
cases, the model trained based on the total loss L :

3.4 � Offloading framework for HMD

To overcome the challenge of deploying a deep learning 
network onto the HPU of the Hololens 2, we devised the 
offloading framework shown in Fig. 4. The image data cap-
tured from the Hololens 2 is transmitted to a server and pro-
cessed by our system to predict the hand pose, and only the 
predicted hand pose data is sent back to the Hololens 2. 
Our system utilizes the WebSocket communication proto-
col. Unlike the request-response model of HTTP, Websocket 
maintains a persistent connection after being established, 
resulting in lower latency for data transmission by elimi-
nating unnecessary header data. Also, to account for net-
work bandwidth and latency, the Hololens2 transmits the 
compressed image to the server over the network. We adopt 
the lossy compression algorithm based on its compression 
performance and encoding time. Utilizing lossy compression 
reduces network traffic drastically with negligible latency 
increases.

After the transmission, the server decodes the data to 
restore the image, which loses slight information compared 
to the original image. For pre-processing, we adopt a detec-
tion-by-tracking approach described in  (Han et al. 2020) to 
crop the hand region. The input is cropped using a prede-
fined bounding box initially, and the next center of the hand 
is extrapolated from the previous two tracked poses. Sub-
sequently, the proposed system is executed, yielding 2.5D 
hand poses in image coordinates, which are then transmitted 
back to the Hololens2. On the device side, the root depth is 
extracted from the depth image in the HMD through 2D pose 

(13)Lweight =
‖
‖wa − w⋆‖

‖

(14)Lattention = Lweight + �2 ∗ Lhm

(15)L = Lhand +Lattention

Fig. 4   Diagram for HMD application
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prediction on the wrist. Finally, the 2.5D hand pose is lifted 
to a 3D hand pose in world coordinates using the camera 
parameters of the HMD and the root depth.

4 � Experiment

We evaluate our hand tracking system on recent hand-object 
datasets: FreiHAND and DexYCB. Also, the performance 
of our full framework on HMD is verified with qualitative 
results in the real world. Since we intend the system to be 
trainable with all features of various datasets, we evaluate 
both the non-sequential dataset(FreiHAND) and the sequen-
tial dataset(DexYCB). Please note that both datasets were 
treated as non-sequential during the training phase. This 
indicates that the continuous frame information from the 
DexYCB was not utilized. Instead, we aimed to replicate the 
learning of temporal information solely using data generated 
by RDG.

4.1 � Datasets

FreiHAND (Zimmermann et al. 2019) is a large-scale hand 
dataset that consists of non-sequential hand poses with real-
world objects and various synthesized backgrounds. It com-
prises monocular color images with pose/mesh annotations 
for 130,240 training samples, while the evaluation set has 
3960 samples with real-world backgrounds and supports an 
online-evaluation system.

DexYCB (Chao et al. 2021) is currently the most recent 
benchmark for real hand-object interaction sequences. This 
dataset comprises 582K RGB-Depth frames of a hand 
interacting with 20 YCB objects, including 1000 grasping 
sequences with a black background. We mainly used the 
official S0 split dataset and considered both right and left-
hand samples while filtering out samples whose hand center 
is outside the image. Evaluation of the remaining official 
split S1 (unseen subjects), S2 (unseen views), and S3(unseen 
grasping) sets are also conducted.

4.2 � Evaluation metrics

As our output of the model is the 3D hand joint/vertex, we 
evaluate both joints and vertices in FreiHAND and only 
joints in DexYCB according to the ground-truth provided 
by each dataset.

Mean per Joint/Vertex Position Error (MPJPE/MPVPE) 
is computed by Euclidean distances(mm) between the pre-
dicted 2.5D joint/vertices and ground-truth data after per-
forming a 3D alignment with Procrustes analysis.

F-Score states the harmonic mean between recall and 
precision between two data w.r.t a threshold. We report 
F@5 mm and F@15 mm.

Area Under Curve (AUC) is the area under the percent-
age of correct keypoints(PCK) curve with error thresholds.

Mean keypoint acceleration (MKA) is computed follow-
ing Han et al. (Han et al. 2020) and reported only on the 
DexYCB, as the metric requires sequential ground-truth 
information. The metric indicates the temporal smoothness 
of the predicted pose set, which is computed as below:

where MKAt and jt are the mean acceleration and joint 
position of the hand in the frame t. Despite the acceleration 
showing erroneous results when there is sudden hand move-
ment, it has been employed as a valuable metric in previous 
studies  (Han et al. 2020; Kanazawa et al. 2019; Tu et al. 
2023) as it is a metric that approximates temporal smooth-
ness in general AR/VR usage scenarios.

4.3 � Implementation details

4.3.1 � Preprocessing

The input images are cropped with a hand-bounding box and 
resized to 256×256. Then the augmentation process consists 
with scaling(±25% ), rotation(±60◦ ), random horizontal flip, 
color jittering(±20 of RGB in 8-bit) is performed. To acquire 
the bounding box, we crop the image with a fixed box size 
from the center of the image on the FreiHAND and adopt 
refined root depth provided by I2L-MeshNet (Moon and Lee 
2020). In the case of DexYCB, since the recorded hand posi-
tion is not centered, we crop an appropriate bounding box 
based on the provided 2D hand pose ground-truth. Addition-
ally, we obtain the ground-truth hand vertices pose from 
MANO (Romero et al. 2017a) pose coefficients of DexYCB 
through the MANO layer facilitated by Manopth (Hasson 
et al. 2019a).

4.3.2 � Training setup

We utilize the weight of ResNet-34 (He et al. 2016) pre-
trained on ImageNet (Deng et al. 2009) as our backbone. 
We trained 50 epochs in an end-to-end manner for the Frei-
HAND. For the DexYCB, we used the pre-trained weights 
with 10 epochs on FreiHAND for regularization. It demon-
strated better performance than training on DexYCB alone at 
preliminary experiments. For generalization, we also verified 
cross-train setup of two datasets. In this setup, the model has 
trained 5 epochs with only FreiHAND and cross-trained for 
45 epochs using a batch configuration distributed based on 
the dataset sizes’ ratio. We use AdamW solver  (Loshchilov 
and Hutter 2017) with a batch size of 64, initial learning rate 
of 3 e− 4, and the rest are set to default value(�1 of 0.9, �2 
of 0.999, and weight decay of 1 e−2). For hyperparameters, 

(16)MKAt = mean(jt−1 + jt+1 − 2jt)
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we set the image input resolution to 256 × 256 , the channel 
dimension of feature map c to 512, and the size of the belief 
map and heatmap nb, nh to 32 and 64, respectively.

Since the proposed HMD framework includes an image 
compression process, we apply an additional process during 
the training for the model integrated into the HMD frame-
work. Details of image compression will be described in the 
section below. Dodge and Karam (2016) report that jpeg 
image compression does not significantly affect the inference 
performance of various networks. Nevertheless, to remove 
minor adverse effects, we forced image quality degradation 
by compressing the portion of image sets through random 
sampling. The sampling and compression ratios are set to 
0.2 and 50%, respectively.

4.3.3 � HMD system configuration

The proposed HMD application with Hololens2 is imple-
mented in a server with an AMD Ryzen 9 7950X 16-Core 
CPU@4.50GHz, 64GB of RAM, and an Nvidia GeForce 
RTX 4090 GPU. The server is also utilized for training and 
evaluation of the network. The Wi-Fi specification is 5 G 
wireless, theoretically communicating data at up to 867 
Mbps. As a result of measuring network quality, the upload 
speed of Wi-Fi is 122.21 Mbps, and the download speed is 
50.23 Mbps.

4.4 � Quantitative results

FreiHAND For the FreiHAND, we follow existing 
works (Boukhayma et al. 2019; Chen et al. 2021b, 2022a; 
Choi et al. 2020; Hasson et al. 2019b; Kulon et al. 2020; 
Lin et al. 2021a; Moon and Lee 2020; Zheng et al. 2021; 
Zimmermann et  al. 2019) to conduct a comprehensive 

comparison with our method. Quantitative results with the 
official test set of FreiHAND are summarized in Table 1. 
Since FreiHAND is non-sequential, we assumed all previ-
ous poses to be zero-valued in our method. Despite this, our 
results are comparable to the state-of-the-art performance 
shown by the baseline method  (Zheng et al. 2021). In other 
words, our method demonstrated notable accuracy even in 
the absence of temporal information, indicating its robust-
ness in scenarios such as re-initialization due to tracking fail-
ure. While our findings demonstrate superior performance in 
terms of framerate compared to existing methods, it would 
be unfair to directly compare them to approaches that utilize 
less powerful GPUs. Therefore, we additionally report fram-
erates on our hardware setup(† ) if available.

In the case of MobRecon (Chen et al. 2022a), we referred 
to the results of the DenseStack backbone, which simul-
taneously reported performance and speed among various 
network settings. Since the result is tested on an Apple A14 
CPU, we report the model’s performance speed within our 
hardware setup(† ). Lin et al. (2021a), a transformer-based 
method, showed performance close to state-of-the-art, but 
inference speed of slow due to the heavy HRNet (Wang 
et al. 2020b) and transfomer (Vaswani et al. 2017) adopted 
as encoder and decoder, respectively. Referring to Fig. 5, our 
method achieves nearly state-of-the-art performance in 3D 
PCK and performs better from an error threshold of 10 mm 
or higher. We also report the performance of our cross-
trained model for real-time demo in Table 1, which shows 
relatively low performance, but still comparable. Regarding 
the generalization performance, which is its primary purpose 
of cross-training, the model exhibits better performance in 
our environment. A related result is shown in Fig. 9.

DexYCB For the DexYCB with official split S0 test set, we 
compare our method with existing works (Chao et al. 2021; 

Table 1   Comparisons with state-of-the-art on FreiHAND

*Denotes cross-trained model for HMD. The previous pose for our method is all set to zero-value, as the FreiHAND is non-sequential

Method MPJPE(↓) AUC
J
 ( ↑) MPVPE ( ↓) AUC

V
 ( ↑) F@5 mm ( ↑) F@15 mm ( ↑) FPS ( ↑)

ICCV19-MANO Fit (Zimmermann et al. 2019) 13.7 0.730 13.7 0.729 0.439 0.892 –
ICCV19-Hasson et al. (2019b) 13.3 0.737 13.3 0.736 0.429 0.907 –
ICCV19-MANO CNN (Zimmermann et al. 2019) 10.9 0.783 11.0 0.783 0.516 0.934 –
CVPR20-YoutubeHand (Kulon et al. 2020) 8.4 0.834 8.6 0.830 0.614 0.966 –
ECCV20-I2L-Mesh (Moon and Lee 2020) 7.4 – 7.6 – 0.681 0.973 53
ECCV20-Pose2Mesh (Choi et al. 2020) 7.7 – 7.8 – 0.674 0.969 8
CVPR23-Yu et al. (2023) 7.3 – 7.3 – – – –
CVPR21-Chen et al. (2021b) 6.9 0.863 7.0 0.861 0.715 0.977 64
CVPR22-MobRecon (Chen et al. 2022a) 6.9 – 7.2 0.856 0.694 0.979 67 / 93†

CVPR21-Lin et al. (2021a) 6.8 – 6.7 – 0.717 0.981 18
ISMAR21-Zheng et al. (2021) 6.5 0.871 6.7 0.867 0.722 0.982 109

†

Ours 6.5 0.870 6.7 0.866 0.723 0.981 140
Ours* 8.6 0.829 8.5 0.830 0.611 0.967 140
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Chen et al. 2022b; Li et al. 2021; Lin et al. 2023; Spurr et al. 
2020; Tse et al. 2022; Xu et al. 2023) that utilize monocular 
input as ours. Since DexYCB is a sequential dataset and 
does not provide ground-truth for vertices, we compute only 
hand joint accuracy and MKA. As shown in Table 2, the 
proposed method demonstrates superior computational effi-
ciency compared to other methods. Recent studies evaluated 
with DexYCB (Chen et al. 2022b; Li et al. 2021; Lin et al. 
2023; Tse et al. 2022; Yu et al. 2023) all aimed at the simul-
taneous reconstruction of hands and objects, so real-time 
performance is not guaranteed. Among the existing studies, 
the most recent work, H2ONet (Xu et al. 2023) shows a 
significant improvement in accuracy compared to previous 
works. However, H2ONet leverages the substantial assump-
tion that hand pose transformation remains rigid across 
nearby frames. Since DexYCB consists of a sequence of 
fixed hand poses after grasping an object, the assumption is 
suitable for the dataset and leads to significant performance 

improvement. However, it is not applicable in real-world 
scenarios. Moreover, this method only achieved marginal 
real-time performance, making it unsuitable for applica-
tions involving HMDs. Lin et al.  (2023) also showed high 
performance, but the computation speed is not reported as 
a method consisting of a heavy network backbone with a 
self-attention layer. The proposed method prioritizes notably 
superior speed over optimal accuracy, which offers signifi-
cant advantages for HMD-based frameworks. These frame-
works must account for not only the inference speed of the 
model but also other factors, such as pre/post-processing 
and communication speed. A comprehensive analysis of the 
MKA value will be provided in Sect. 4.6, as limited compa-
rable research findings available.

We perform experiments for four distinct split sets to vali-
date the model’s generalization performance across various 
criteria. However, there is a limited number of cases where 
results for all DexYCB split sets have been reported, result-
ing in a relatively small comparison group. Referring to 
Table 3, all split sets, except for S1, achieved state-of-the-
art performance in quantitative metrics. A notable observa-
tion is that when evaluating unseen viewpoints using the 
S2 split, the model’s performance exceeded the default 
split’s, and it performed less when testing the S1 split with 
unseen subjects. This difference may be attributed to the 
initial training with FreiHAND, which facilitated learning 
across all camera perspectives but had less effect on gener-
alizing subject-related aspects. Consequently, the proposed 
system’s performance is not solely dependent on dataset size 
and demonstrates superior generalization capabilities across 
different criteria such as subjects, viewpoints, and grasping 
scenarios.

Performance on Hololens2 In the proposed offload-
ing framework, we evaluated the average latency for each 
step, as shown in Fig. 6. The process involved 10.23 ms for 
transmitting images from Hololens 2 to the server, 3.56 ms 
for preprocessing, 7.21 ms for TE-GCN inference, 0.13 ms 
for post-processing, and finally, 8.04 ms for returning hand 

Fig. 5   Comparison of 3D PCK on FreiHAND

Table 2   Comparisons with 
state-of-the-arts on DexYCB

*Denotes cross-trained model for HMD

Method MPJPE ( ↓) AUC
J
 ( ↑) MKA ( ↓) FPS ( ↑)

ECCV22-Chen et al. (2022b) 19.00 – – –
ECCV20-Spurr et al. (2020) 17.34 0.698 – –
CVPR22-Tse et al. (2022) 16.05 0.722 – –
CVPR22-Li et al. (2021) 12.80 – – –
CVPR23-Yu et al. (2023) 8.92 – – –
CVPR21-Chao et al. (2021) 6.83 0.864 – –
CVPR23-Lin et al. (2023) 5.47 – – –
CVPR23-H2ONet (Xu et al. 2023) 5.30 0.894 – 35
Ours 5.81 0.884 5.197 140
Ours* 5.94 0.881 5.482 140
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pose to Hololens 2. Thus, a total of 29.17 ms is required to 
process a single image. Since we processed the latest image 
received on the server, the framerate perceivable by users 
remains consistent with the reported latency at 34.3 FPS. 
Furthermore, additional experiments showed that WiFi spec-
ifications and connection environment directly influence data 
transmission and reception latency. Hence, it is expected that 
the overall framerate of the proposed module will increase 
in the future with improved communication environments.

4.5 � Qualitative results

We collect challenging cases in Fig. 7, which include cases 
of significant self-occlusion or object occlusion. The results 
for both datasets exhibit robust joint and mesh predictions, 
and some sequences show results that appear to fit better 
visually than the ground-truth mesh. In Fig. 8, we present 
some failure cases and notable successes to demonstrate the 
detailed performance of our model. Our system struggles 
with unnatural and artificial hand poses, excessive self-
occlusion, and ambiguous RGB input on depth, leading to 
incorrect predictions. However, our model performs well in 
cases where the hand is partially out of view, or the RGB 

input is blurred due to fast motion. These successful cases 
are challenging to achieve using deterministic temporal 
information utilization, indicating that our system performs 
temporally adaptive pose regression without relying too 
heavily on current or previous frames. Figure 9 shows the 
sample results of the proposed system on HMD. We qualita-
tively evaluated the system by streaming RGB images from 
Hololens2, estimating the hand information on the server, 
and transferring the data to the HMD. We utilized a cross-
trained version of our model, which exhibited much better 
generalization performance. Due to latency issues, mesh 
rendering is performed only on the server for visualiza-
tion purposes. Since we used the default MANO right-hand 
model, there are discrepancies in shape between the user’s 
hand and the prediction model, resulting in an incorrect pose 
at the root position or the edge of the hand. To address this 
problem, we plan to implement online personalization of the 
hand model in future work.

4.6 � Ablation study

We report the ablation studies on DexYCB with major loss 
components configuration in Table 4. We apply the same 
training setup for the DexYCB described in Sect.  4.3. 
Although the individual loss configurations did not have a 
notable impact on MKA, the results with the full loss con-
figuration showed significantly lower MKA values. This 
indicates that the proposed loss set contributes to temporal 
coherence in a complementary manner, even when trained 
without ground-truth previous pose information of DexYCB.

To support our system design, we conduct a ablation 
study with various factors on network design. Table  5 
shows performance according to different backbones and 
the number of stacked layers of adaptive-GCN. When using 
the ResNet-18 backbone, the inference speed increased due 
to the relatively light model, but the accuracy decreased due 
to the simplified model complexity. We found that using two 
stacked GCN layers resulted in better accuracy and speed, 
and supposed that adding more layers increased the optimi-
zation difficulty.

Next, we evaluate the impact of each data type defined 
in the Retroactive Data Generator on performance. Since 

Table 3   Comparison of official 
split types of DexYCB based on 
MPJPE(mm)

* denotes cross-trained model for HMD
Bold values denote the best performance for each aspect

Method S0 (sequences) S1 (subjects) S2 (views) S3 (grasping)

ECCV20-Anil et al. (Armagan 
et al. 2020)

17.34 22.26 25.49 18.44

CVPR22-Tse et al. (2022) 16.05 21.22 27.01 17.93
Ours 5.81 7.08 5.51 6.50
Ours* 5.94 6.94 5.54 6.60

Fig. 6   Diagram of the latency for each step within our HMD-Server 
offloading framework
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Fig. 7   Qualitative results on FreiHAND and DexYCB

Fig. 8   Failure and challenging cases result in FreiHAND and DexYCB
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ground-truth data of the previous pose is required for the 
non-RDG case, we perform training and testing only on 
the DexYCB. The results are presented in Table 6; due to 
the limitations of experimenting with all possible distribu-
tions while adjusting control variables, the reported results 
are limited to a few selected ratio combinations. As the 
influence of several variables acted simultaneously, mak-
ing it challenging to draw intuitive conclusions for each 
variable individually. The MKA value shows the lowest 
value in the case of r1, where only the Static type from 

RDG is available. The result occurs as the network uni-
formly considers the current frame to be identical to the 
pose of the previous frame, leading to r1 displaying the 
most temporally smooth outcomes, irrespective of pose 
accuracy. The result from r2, comprising only perturbed 
data, emphasizes the disparity between conventional 
augmentation methods and our proposed RDG module. 
It indicates that data augmented only with random noise 
failed to effectively serve as the previous pose, resulting 
in inadequate temporal coherence and accuracy.

Despite the complexity of various influencing factors, 
through multiple experiments, the proposed system was 
able to improve temporal smoothness by achieving the 
highest pose estimation performance and the second-best 
MKA value at the r0 ratio. It should be noted that temporal 
smoothness is one aspect of the representable motion by 
the proposed system. As shown in Table 1, it demonstrates 
state-of-the-art performance even in non-sequential dataset 
situations, i.e., re-initialization scenarios with no previous 
pose.

We also examine the effect of image quality degradation 
on the performance of our proposed system. As shown 
in Table 7, the performance of the model significantly 
decreases when the image compression is not considered 
during training. On the other hand, when the model is 
trained with quality-degraded images, it achieves a per-
formance close to the optimal case. This implies that the 
model is trained to operate regardless of image quality 
by degrading the partial training image set. As a result, 
we can maintain the state-of-the-art performance of the 
trained model while taking advantage of image compres-
sion in the HMD framework.

Fig. 9   Visual results on Hololens2 viewpoint. The scene is captured on Hololens2, and hand mesh is rendered in the off-loaded server

Table 4   Ablation study on Loss components

Ground-truth MKA is computed on DexYCB testset
Bold values denote the best performance for each aspect

Method MPJPE ( ↓) AUC
J
 ( ↑) MKA ( ↓)

Ground-truth – – 4.094
Lhand 6.17 0.877 5.643
Lhand +Lweight 5.89 0.882 5.666
Lhand +Lhm 5.83 0.883 5.667
Lhand +Lweight +Lhm 5.81 0.884 5.197

Table 5   Ablation study of different backbones and GCN layer con-
figuration

Bold values denote the best performance for each aspect

Backbone GCN layer MPJPE ( ↓) AUC
J
 ( ↑) MKA ( ↓) FPS ( ↑)

ResNet-18 2 5.94 0.881 5.406 187
ResNet-18 3 6.01 0.880 5.291 176
ResNet-34 2 5.81 0.884 5.197 140
ResNet-34 3 5.92 0.882 5.201 133
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5 � Conclusion

We proposed a real-time novel hand-tracking system that 
enables robust hand pose estimation under various real envi-
ronmental conditions and utilizes it in HMD as an offloading 
framework. Our system consists of a 2-stage GCN-based 
lightweight network that balances accuracy and real-time 
performance. Furthermore, we have developed a novel 
approach to incorporating temporal information via the 
attention mechanism, which we have validated on recent 
benchmark datasets. The proposed system achieves state-
of-the-art balanced performance in FreiHAND and DexYCB 
and has demonstrated the importance of adaptive utilization 
of temporal information for real-world scenarios. Moreover, 
integrating our system into an HMD through the offloading 
framework has expanded its potential for practical applica-
tions for any other mobile devices, and we have demon-
strated the model’s generalization performance.

Limitation One notable limitation is that the integrated 
HMD system did not achieve a desirable level of runtime 
speed. The primary factor contributing to increased latency 
in the proposed HMD framework was preprocessing and 
communication speed, which can be enhanced through sys-
tem optimization. Another limitation is the hand tracker’s 
vulnerability when dealing with unseen subjects. We plan 
to address this limitation by leveraging the system’s capabil-
ity to learn from various public datasets, irrespective of the 
sequential nature of the data.

Future work Since we solely assessed the real-time per-
formance of the hand tracker on an HMD, our next step 
involves implementing practical applications on HMDs and 
conducting user studies to demonstrate the actual usability 
and effectiveness for subjects. From a system perspective, 
our plan is to delve into advanced methods that leverage 
temporal information and employ self-supervised learning 
approaches, aiming to enhance the overall generalizability 
of the system.

Table 6   Ablation study of 
Retroactive Data Generator

Each model is trained on the DexYCB only
Bold values denote the best performance for each aspect

Static Perturbed Zero-value MPJPE AUC​ MKA

wo/RDG – – – 10.374 0.79 9.692
r1 1.0 0.0 0.0 18.354 0.639 4.412
r2 0.0 1.0 0.0 7.776 0.845 5.914
r3 0.0 0.0 1.0 6.022 0.880 5.409
r4 0.5 0.5 0.0 8.127 0.838 5.616
r5 0.5 0.0 0.5 5.918 0.882 5.475
r6 0.0 0.5 0.5 5.909 0.882 5.398
r7 0.65 0.25 0.1 6.008 0.880 5.431
r8 0.45 0.35 0.2 5.926 0.882 5.353
r9 0.2 0.45 0.35 5.939 0.881 5.317
Ours (r0) 0.2 0.65 0.15 5.879 0.882 5.271

Table 7   Ablation study of 
image quality degradation 
process for HMD framework

Each model is trained on the target dataset only
Bold values denote the best performance for each aspect

Compress. in 
train

Compress. 
in test

MPJPE ( ↓) AUC
J
 ( ↑) MPVPE ( ↓) AUC

V
 ( ↑) MKA ( ↓)

FreiHAND
No No 6.5 0.870 6.7 0.866 –
No Yes 8.1 0.840 8.2 0.836 –
Yes No 6.7 0.568 6.9 0.864
Yes Yes 6.7 0.866 6.9 0.862 –
DexYCB
No No 5.9 0.882 – – 5.271
No Yes 6.0 0.880 – – 6.654
Yes No 5.9 0.882 – – 5.108
Yes Yes 5.9 0.882 – – 5.395
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