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ABSTRACT

We propose a 3D hand tracking system using bare-hand depth in-
painting from an RGB-depth image for a hand interacting with an
object. The effectiveness of most existing hand-object tracking meth-
ods is impeded by the insufficiency of data, which do not include
hand data occluded by the object, and their reliance on the informa-
tion inferred from assuming the specific object type. We generate a
sufficiently accurate bare-hand depth image from a hand interacting
with an object using a conditional generative adversarial network,
which is trained using the synthesized 2D silhouettes of the object
to learn the morphology of the hand. We evaluate the proposed
approach using a hierarchical particle filter-based hand tracker and
prove that our approach utilizing the bare-hand tracker in the hand-
object interaction dataset achieve state-of-the-art performance. The
generalization of our work will enable visual-tactile interaction that
is more natural in various wearable augmented reality applications.

Index Terms: Artificial intelligence—Computer vision—
Computer vision problems—Tracking; Human computer interaction
(HCI)—Interaction paradigms—Mixed / augmented reality

1 INTRODUCTION

As the augmented reality (AR) technology evolves, the need for
natural hand gesture-based interactions is growing. A real-time hand
pose estimation can further develop natural hand gesture-based in-
teractions. Although extensive studies have been conducted on the
isolated hand pose estimation, scant scholarly attention has been
devoted to tracking a hand interacting with an object. A recent
study [51] shows that although tracking isolated bare hands has
evolved to become sufficiently accurate, using a single camera to
track the pose of a hand interacting with an object remains very
challenging, especially in terms of object diversity. Owing to the
foregoing challenges, a majority of the currently available head
mounted display for AR offers hand-based interaction only in bare-
handed situations, thereby compelling users to be bare-handed for
the desired interaction, regardless of the current hand pose. In this
paper, we introduce a novel framework for the 3D tracking of a
hand interacting with an object using bare-hand depth inpainting,
which is implemented with a conditional generative adversarial net-
work (cGAN). The bare-hand generator was designed to generate
a realistic bare-hand depth image from a given RGB-depth (RGB-
D) image of the hand interacting with the object. To generalize
the proposed approach to various objects, we produced a training
dataset consisting of synthesized 2D silhouettes of random geometry.
The inpainted bare-hand depth image was transferred to a hierar-
chical particle filter(HPF)-based tracker, and hand joint poses were
computed.

Estimating the hand pose in a 3D space during interaction with
objects is extremely challenging. When estimating the pose of an
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Figure 1: 3D tracking system for hand interacting with an object from
RGB-depth input. From the camera input (left), we generated bare-
hand depth map (upper right), and estimated full 3D pose of hand
(lower right).

isolated hand, the self-similarity, self-occlusion, and highly artic-
ulated joint structure of the hand poses difficulty. In addition to
these intrinsic problems, it is necessary to consider the occlusion by
the object and the complex geometry of the object when tackling
the pose estimation of a hand interacting with an object. Various
approaches have been deployed to tackle these challenges. To di-
rectly solve several occlusion issues, a multi-camera system-based
approach [39, 61] has been proposed. However, this approach tends
to be expensive due to the calibration and synchronization required
by the system. Using a single camera, a monocular RGB-based
method [32, 47], and approaches based on RGB-D input have been
proposed. For the RGB-D-based method, [16, 28, 40] developed
model-based generative approaches. [17, 46] proposed a learning-
based discriminative method, and [34, 50, 56] proposed a hybrid
approach, which attempted to merge the advantages of both ap-
proaches.

The majority of these works aimed to improve the hand tracking
results by directly utilizing the information of objects as the elements
of the dataset or constraint for hand poses. We conjectured that
the strategy of utilizing the object’s information was the reason
why previous approaches have shown insufficient results to various
types of objects that were not predefined or covered in the training
sequence. As a solution, we proposed a method in which bare-hand
data is generated, regardless of whether the hand is interacting with
the object or not. Based on the fact that a hand can hold various
objects in identical articulations, we assumed that a bare-hand depth
map can be accurately generated based on the partially observed
hand region, regardless of the geometry and 3D pose of the object
being interacted with. Generally, the pose of the hand can be limited
by the type of the object. However, to construct a system that
considers daily-life objects, which mostly have a combination of
basic geometry or an indefinable dynamic structure, we decided that
it was more advantageous to deviate from utilizing the taxonomy of
the objects.

The core idea is that the cGAN [21], which has been proposed
for accomplishing a domain-to-domain translation, can be adapted
to a domain that represents a hand interacting with an object and
a bare hand. The critical point is not to create a merely realistic
bare hand but one with the same articulation as a hand interacting



with an object. Therefore, paired data, which consists of a hand
with an object and a bare hand, are required. A similar approach
was adopted in [60], where an attempt was made to reconstruct a
bare hand point cloud from an object-hand point cloud using an
autoencoder. However, because there were no clues to distinguish
the object from the hand in this study, the approach was effective
only in trained environments. However, we aimed to use RGB data
as indirect segmentation information for objects and hand, which
makes it possible to omit the hand-object segmentation process
from the entire system. Although there are diverse large-scale bare-
hand [55, 67] and object-hand [32, 34, 50] datasets, none of them
satisfies our requirements.; Therefore, we constructed a new paired
dataset by synthetically generating a random 2D silhouette of the
object on the bare-hand dataset. In addition, to induce an intensive
learning effect for the hand region occluded by the object, the binary
mask of the object was extracted during dataset generation and
utilized only in the training step.

Our main contributions can be summarized as follows:

• A novel method that supports the robust performance of real-
time 3D hand pose estimation for a hand interacting with an
object by generating a bare-hand depth image from observed
RGB-D data.

• A technique for generalizing the type of the object being in-
teracted with by synthesizing the 2D silhouette of the object,
rather than using a 3D model of the object.

• The first real-time hand tracking system that utilizes a complete
bare-hand tracker in a hand-object interaction context.

2 RELATED WORK

In this section, we review recent works on bare-hand tracking, hand-
object tracking, and depth inpainting domain, which are the key
components of the proposed system.

3D Hand Tracking: Existing approaches to bare-hand hand track-
ing can be classified into three types: generative, discriminative, and
hybrid. The generative methods [31, 38, 45, 54] estimate the pose by
optimizing the defined objective function, to reduce the discrepancy
between the input image and 3D hand model. As they rely on the
solution from the previous frame, they may fall into the local min-
ima. The discriminative methods were adopted in [24, 35, 36, 68],
where they aim to predict the entire hand joint location from the
input directly. As reported in [66], although current discriminative
methods are generally effective on large training datasets, they are
not generalizable in an unseen environment. The hybrid approaches
are an attempt to combine the strengths of the previous two methods.
There are several perspectives on how to combine the respective ele-
ments. In most studies [33,41,49,52], the strengths of the generative
methods have been fused, which can ensure continuous robustness
or refine the initial estimation, by harnessing the strengths of the
discriminative methods, which exhibit accuracy in a single frame
and trainable features.

Although various research fields have recently adopted GANs
[15], few studies have adopted them for hand pose estimation.
[18, 59] utilized GAN to model the latent statistical relationship
between the hand pose and corresponding depth image. Chen et
al. [6] utilized GAN as a hand-depth map generator from an RGB
input to regularize the 3D hand pose estimation model. Unlike our
work, these studies do not utilize GAN to achieve the domain trans-
lation of a hand interacting with an object to a bare hand; however,
they indicate that mapping to bare-hand depth images is sufficiently
learnable and effective.

3D Hand-Object Tracking: The generative approach, which at-
tempts to exclude the object and focus on the model of the hand
[17, 47] exhibits limited performance where various articulations
are concerned. Another approach [16, 28, 40] treats the hand and

object as a respective parametric model. Assuming that the object
type is known, Kyriazis et al. [28] proposed a collaborative system
with a set of independent trackers to track a hand interacting with
multiple objects. To tackle the problem with a dataset consisting of
a hand and an object being interacted with, several discriminative
approaches [32, 46, 47] for hand-object tracking have been proposed.
For challenging situations, such as the first-person viewpoint with
large occlusions and cluttered scenes, Mueller et al. [34] proposed
a system that combines two convolutional neural networks (CNNs)
for localization and estimation. Tekin et al. [53] developed a unified
framework to simultaneously track a 3D hand, object, and action
classes. To combine the advantages of the generative and discrim-
inative approaches, Sridhar et al. [50] suggested combining dis-
criminative handpart classification and generative pose optimization.
Oberweger et al. [37] proposed a method for iteratively updating
the pose prediction result using a CNN without a 3D model of the
hand or object through a feedback loop. Some methods [13, 16]
utilize interacting object as a constraint for the hand pose. Tzionas
et al. [56] proposed a framework consisting of a single objective
function with discriminatively trained salient points, collision de-
tection, and physics simulation. Choi et al. [7] utilized the grasp
classification through a trained CNN for hand pose regression.

All the previous approaches were effective in limited environ-
ments under various constraints while performing an additional
process to utilize information related to the interacting objects or
including a vast feature related to the objects in the latent space to
be learned. In contrast, the proposed method, by performing transla-
tion from a given observation under a variety of environments to a
bare-hand domain, realizes a less challenging tracking environment.

Depth Inpainting: Achieving full coverage scene data estimation
in the 3D scene capture system is an unsolved challenge that has
received significant attention. Therefore, various approaches to
completing, enhancing, and refining acquired images via a secondary
data-filling process have been proposed.

Among the specific research objectives, image completion for
the plausible synthesis of large spatial areas of color images has
also been actively studied. [26, 30] investigated approaches that can
be adopted for depth filling. Notably, Criminisi et al. [8] studied
exemplar-based inpainting, which is regularly used in the color and
depth-filling process [9, 19]. It prioritizes the filling order based on
the gradient along the target boundary; however, its performance
degraded significantly in scenes that were not front-parallel view. In
[42,64], approaches that utilized CNNs aided by adversarial training
were proposed. Pathak et al. [42] demonstrated that well-trained
CNNs could generate the contents of an arbitrary image region,
which is an objective similar to ours. Studies on removing the object
from the scene depth or filling the depth region that is missing due to
sensor calibration issues, noise, and artifacts have attracted attention
due to significant challenges [5], which is different from inpainting
color images. These studies can be broadly classified into spatial-
based methods [57, 63, 65], temporal-based methods [4, 22], and
spatio-temporal-based methods [43,62]. However, there are many
branches due to the input dependencies and required information
domain.

Unlike a majority of the existing depth inpainting studies that
focused on natural filling based on the structure and local features in
the image, the objective of data filling after object removal is specific
to the bare-hand context. Therefore, a technique that can be opti-
mized for the specific domain, rather than a general depth inpainting
technique, is required. Consequently, we focused on inpainting stud-
ies using recently proposed deep neural networks, which satisfied our
objectives. Several methods have made advances in estimating depth
from a single monocular color image [11, 14, 27] and performing
super-resolution and upscaling for depth image [3, 29, 44]; typically,
they learn the spatial and/or temporal feature within the scene to
accomplish this task. Because our final goal was to track the 3D



Figure 2: Schematic of proposed system. Generator for depth inpainting was trained using paired dataset consisting of synthesized object-hand
input x and bare-hand output y. In the online step, trained generator receives RGB-D input and generates inpainted depth map. Based on this
bare-hand domain depth map, bare-hand 3D tracker (HPF) estimates the final 3D hand pose.

hand pose accurately, the observable data corresponding to the real
hand must be maintained as much as possible during the depth in-
painting process. Therefore, we adopted the cGAN [21], which can
directly compare the direct discrepancy between the ground-truth
and generated output, rather than learn the mapping between two
domains, bare-hand and occluded-hand, using an unpaired dataset.

3 METHODOLOGY

3.1 Overview

Our goal is to estimate the 26 degrees-of-freedom (DoF) hand pose
by generating the depth image of the bare hand from the hand
interacting with the object using a single RGB-D camera. The
Intel RealSense SR300 was utilized to obtain 640×480 RGB and
depth frames. A pipeline of the proposed method is shown in Fig.2.
First, we preprocessed the input RGB and depth images, denoted as
c ∈ RH×W×3 and d ∈ RH×W×1, from the camera to normalize the
data and reduce the effect of the light condition. Then, the trained
generator, denoted by G takes the concatenated RGB-D data as an
input and generates the depth image, which would have the same
pose as a bare hand. The generated output was transferred to the
HPF-based tracker [31] to estimate the 26-DoF hand pose per frame.

Hand Model: We employed the 26 DoFs of a parametric hand
model; six DoFs for the model’s global 3D translation and 3D
rotation (encoded as a quaternion); and four DoFs for each finger.
Each finger was composed of three joints, a saddle joint at the base
with two parameters, and two hinge joints with one parameter. From
the 27 parameters of the hand model, we could sufficiently render
most of the configuration of the hand. The discrepancy between
the estimated hand pose hypothesis and the observed partial hand
information was computed using the OpenGL pipeline.

3D Hand Tracker: Although the context of the experiment was a
hand-object interaction situation, we exploited the various existing
state-of-the-art bare-hand trackers. However, we had to utilize a
tracker that relied solely on depth image, not color information, as
the proposed method generates a bare-hand depth image from a
given input. The HPF for the method proposed by Makris et al. [31]
for tracking hand articulations was utilized in our system.

3.2 Loss function
The goal of the bare-hand depth inpainting network is to learn a
mapping function between two domains A (hand holding an object)
to B (bare hand) by learning how to estimate the overall configuration
of the bare hand from the observed partial hand information. We
denoted the dataset {xi,yi}N

i=1 where input xi ∈ A and desired output
yi ∈ B with dimensionality d. Let x∼ [xc,xd ],y∼ [yd ], denote that
x is a concatenated image of color and depth channel, and y is a
single-depth channel.

Our objective contained three types of term: conditional adver-
sarial loss LcGAN , context-conditional loss Lcc; and L1-norm loss
L1. Lcc was adopted from [10], which was proposed to enhance the
training effectiveness for a specific patch of the image. The basic
objective of a conditional GAN can be expressed as follows:

LcGAN(G,D) = Ex,y[logD(x,y)] (1)
+Ex,z[log(1−D(x,G(x,z)))] (2)

The input random vector z was provided in the form of a dropout in
the generator, which [21] proved to be more effective than the direct
noise vector.

Although the proposed D was activated on the patch-level, rather
than on the entire image, we added the context-conditional loss
inspired by [10] to specify the training on the region that was oc-
cluded by the object. With the synthetic object mask extracted in the
process of generating the dataset, D received the combined depth
map in which the generated output G(x) is filled in the region corre-
sponding to the object mask on the original input depth image xd ,
rather than the entire generated output. If the data generated for the
object region was not consistent with the surrounding hand depth of
the image, we assumed this value disparity to be a valid cue for the
discriminator to preserve global continuity. Formally, let m ∈ Rd
denote a binary mask of the object region; the operator � denotes
element-wise multiplication. To express the merging of the image
between the output of the generator G and input depth image xd
based on the object mask m, we defined the operator ⊗ as follows:

m⊗G(x,z) = m�G(x,z)+(1−m)� xd (3)

Then, Lcc can be formulated as follows:

Lcc(G,D) = Ex,m,z[log(1−D(x,m⊗G(x,z)))] (4)



Combining the GAN objective with a traditional loss, such as L2
distance [42] or L1 distance [21], has been beneficial for inducing
the generator to be near the ground-truth output. Thus, we also added
the L1 distance loss between the ground-truth output and generated
output.

LL1(G) = Ex,y,z ‖ y−G(x,z) ‖1 (5)

Our final objective was combined as follows,

G∗ = argmin
G

max
D

LcGAN(G,D)+λ1Lcc(G,D)+λ2LL1(G) (6)

3.3 Data generation
Training the generator necessitated the use of a pair of RGB-D
image, which consists of a bare hand and a hand interacting with an
object, with the same hand articulation. As stated in Section 1, no
public dataset satisfied the above conditions. Therefore, we acquired
a bare-hand RGB-D dataset and synthetically generated random 2D
silhouettes, representing the projected form of the object.

Hand-object interaction datasets have been created in previous
studies [13, 34] through the augmentation of a 3D model of an
object, which is then combined with a virtual hand model or real
hand. However, because the variety of objects that can be created
are practically limited, only the trained object categories indicated
good results during the testing phase. We observed that although
the 3D geometric form of the object may vary, the 2D silhouette
projected by the camera was significantly less diverse. In other
words, if a 3D object corresponds to a parametric space according
to the geometric form, the 2D object silhouette can be expressed
as a reduced dimension of the 3D object space. Therefore, we
opted not to augment 3D objects; rather, we created arbitrary 2D
object silhouettes. The generated dataset included a pair in which
a synthetic object partially occluded a hand, as well as a pair in
which the hand was not occluded at all. Thus, we could satisfy the
purpose of generating a bare hand, regardless of whether there was
interaction with an object.

For the quantitative evaluation, we acquired the RGB-D images
of a hand interacting with various types of real objects selected
with reference to [12]. We collected cuboid, spherical, and cylindri-
cal objects. Moreover, intricately formed objects and deformable
ones were included to verify the generalizability of the proposed
approach.

Real Hand Data Acquisition: We captured several sequences in
mid-air, and segmented the hand region using depth thresholding
to acquire the bare-hand depth and calibrated color images. We at-
tempted to capture a natural, sufficiently self-occluded hand motion
from a 3rd-person viewpoint, rather than a static sequence. Further,
the dataset included motions in which the front and back sides of
the hand were exposed. Assuming the circumstances surrounding
the hand localization were not accurate, an additional sequence was
recorded in every peripheral part, based on the triaxial distance from
the camera. In total, 6,127 bare-hand frames were captured.

Synthetic Object Generation: A synthetic object-hand dataset
was generated by overwriting random texture color and randomly
positioned depth maps in the identical pixels of the RGB and depth
images of the bare-hand dataset. A schematic of the process is
shown in Fig.3; this yields a paired RGB-D dataset consisting of
the images of a bare hand and synthetic object-hand. The form
of the synthetic 2D silhouette to be created and the location were
determined based on the following parameters. Let funi f orm(z1,z2)
be the random number generator with uniform distribution within
the range of z1 to z2. We used yc,yd to denote the RGB and depth
image of the bare hand, respectively; ox,oy to denote the 2D position
of the synthesized object on the image; od to denote the depth value
of the object; and ot to denote the color texture of the object. We
defined the geometric form of the object using two variables, # of
points of polygon Np and length of each polygonal side {li}

Np
i=1.

Figure 3: Synthetic object-hand dataset generation schematic. Each
2D object geometry, texture, and depth value were assigned arbitrarily
and applied to RGB-D bare-hand dataset.

The formulation can be written as follows:

ox = funi f orm(η1, W −η1) (7)

oy = funi f orm(η1, H−η1) (8)

od = funi f orm(min(yd)−η2, min(yd)+η2) (9)

ot ∈ Stexture (10)
Np = funi f orm(4, 8) (11)

li = funi f orm(lmin, lmax) (12)

where η1 was set to add a margin to the position of the object,
and η2 was the threshold of the object-depth range, which were
selected to evenly represent situations where the object was in front
of, behind, or between fingers. Stexture is a set of randomly selected
65 texture images prepared in advance. We adjusted the parameters
for each length of the side lmin, lmax empirically by balancing the
scale of the object and the bare hand. During synthesis, a binary
mask of the object was extracted for the training sequence.

3.4 Training and Inference

Network Architecture: We adopted the architecture for our gener-
ative network from pix2pix [21]. Both the generator G and discrim-
inator D used modules of the convolution-batchnorm-ReLu [20].
The generator G takes 4-channel input x ∈ RH×W×4 and exports
1-channel output x́d ∈RH×W×1. G contains skip connections, based
on the general shape of a U-net [48]. For the discriminator D, 70×70
PatchGANs [21], which can be classified at a patch-level with fewer
parameters than a full-image discriminator, were utilized.

Training: We trained the network in Tensorflow [1] with a total
of 24.5k dataset and 45 epochs with a batch size of 1, initialized
using the Adam optimizer [25], at the learning rate of 1× 10−5,
β1 = 0.5,β2 = 0.999,λ1 = 2.0,λ2 = 100.

Inference: FFor inference, we conducted preprocesses to gener-
ate the network input x from the acquired camera input c,d. To
localize the hand region of interest (ROI), we extracted the hand
position roughly by segmenting the hand using a simple color-based
threshold. As accurate hand segmentation, which can be achieved
by several existing approaches [2, 23, 58], was not our focus, we
assumed that the observable skin color had a small variation, which
could be roughly segmented through manual thresholding. After
localizing the ROI of the hand, we normalized the brightness ele-
ments in the dataset. The c, which was the RGB color space, was
converted to a HSV color space, and the brightness value V was



equalized. Then, both c,d were resized to 256×256 and normalized
in the range of (−1,1). The final network input x was generated by
concatenating the preprocessed c and d. As the output of bare-hand
generator x́d = G(x,z) had been scaled on 256×256×1, we applied
reverse normalization to the x́d based on original minimum & maxi-
mum depth value and re-scaling with localized region information.

4 EXPERIMENTS

As the proposed system was composed of the independent modules,
i.e., the bare-hand inpainting network and hand pose tracker, we
evaluated the accuracy of depth inpainting and 3D hand pose tracking
through the entire process.

Test Dataset: The quantitative bare-hand depth inpainting experi-
ment was conducted with a 2.4k synthetic object-hand test dataset,
which was not included in the training dataset. For the hand pose
tracking, we evaluated our method on the DexterHO dataset [50].
The dataset consisted of six sequences of RGB-D data and calibra-
tion parameters. It contained both 2D and 3D location annotations
for the hand and object. However, because the hand only made slight
contact with the object in four out of the six sequences, no situation
existed in which the object directly occluded the hand. Conversely,
although our proposed method was clearly effective for directly oc-
cluded sequences, in the other cases, the performance of the utilized
bare hand tracker (HPF) was affected. Therefore, to verify the actual
performance improvement of the proposed method, we only utilized
the “occlusion” and “rotate” sequences for the quantitative exper-
iment. We also utilized a modified form of the annotation by M.
Oberweger et al. [37], which reported some erroneous annotation of
the original data and made the corrected data available.

For qualitative results, we evaluated our system on the DexterHO
and self-generated hand interaction sequences using various real
objects. Specifically, we trained the bare-hand depth inpainting
network on a synthetic object-hand dataset that did not contain any
3D model of the real object and none of the data from the test dataset,
including DexterHO.

Evaluation Methods: To evaluate the inpainting accuracy, we
computed the L1 norm average and median and the peak signal-
to-noise ratio (PSNR). Additionally, we adopted the metric patch-
based normalized cross-correlation (PNCC) proposed by A. Baruhov
[3]. This measurement was proposed to show the correspondence
between two images by computing the normalized cross-correlations
between the local patches with overlap. Formally, the normalized
cross-correlation function denotes ρ(·, ·), and N the total number of
patches and two images, X and Y . The similarity, PNCC(X ,Y ), can
be defined as follows:

PNCC(X ,Y ) =
1
N ∑

i, j∈[0,s,2s,...]
ρ(Xb

i, j,Y
b
i, j) (13)

where Ib
i, j is the patch of image I starting at pixel (i, j) and ex-

tending to (i+b−1, j+b−1). We used b = 16, and s = 4, similar
to the reference.

To evaluate the hand pose tracking accuracy, we used the per-
centage of correct keypoints (PCK) score on 2D and 3D. It defines
based on keypoints if, compared with the ground-truth, the result
satisfies the distance threshold as a circle (2D, pixel) or sphere (3D,
mm). WWe compared our method with the state-of-the-art methods
on the DexterHO dataset, using the 2D and 3D PCK results from
Zimmermann et al. [68], Mueller et al. [32], Sridhar et al. [50] and
Oberweger et al. [37]. [37,50] reported the pose estimation result for
each sequence of the DexterHO dataset, and the comparison with
this result is shown in Table.2.

Quantitative Evaluation: For the depth inpainting accuracy on
the synthetic object-hand test dataset, both cases resulted in highly

Metric Base Base+Lcc

L1 norm avg. 5.836 mm 5.467 mm
L1 norm median. 0.656 mm 0.3487 mm

PSNR 28.71 31.12
PNCC 0.8967 0.9126

Table 1: Depth inpainting accuracy

Figure 4: Quantitative results on DexterHO with 2D PCK. Z&B repre-
sents result from [68] and F.Mueller represents result from [32].

Method Data type Occlusion Rotate Average

Sridhar et al. [50] RGB+Depth 17.5 mm 16.3 mm 16.9 mm
Oberweger et al. [37] Depth 16.3 mm 17.9 mm 17.1 mm

Our work RGB+Depth 14.3 mm 17.8 mm 16.0 mm

Table 2: 3D fingertip error comparison on DexterHO.

accurate inpainting, as shown in Table.1. In the case of the PNCC
metric referenced in the [3], which was based on generating a low-
quality depth to a high-quality depth image, the value outputted
by the state-of-the-art method was 0.633. Based on this value, we
demonstrated that our method generated an accurate bare-hand depth
image. In addition, it was proven that the overall accuracy improved
when Lcc was included.

Fig.4 and 5 show the quantitative results on DexterHO with 2D
PCK and 3D PCK. Because the ground-truth provided by the Dex-
terHO dataset does not have data for occluded tips, the effect of
depth inpainting on the joints that were directly occluded by the ob-
ject was not reflected in the quantitative results. Nevertheless, both
results showed comparable tracking accuracy with the state-of-the-
art methods. The average 3D fingertip error is shown in Table.2; the
proposed method significantly outperformed the other methods. The
proposed approach successfully generated an effective bare-hand
depth image from the given data. Note that the pose tracker we
utilized was designed for the bare-hand situation.

Qualitative Evaluation:
The qualitative experiment was conducted for the DexterHO

dataset and self-generated object-hand sequences. As shown in
Fig.6, a sufficiently accurate inpainted depth image enabled an HPF
to successfully track the pose of the hand interacting with the object.
From the result of inpainting in the second row, we can observe
a failure to completely generate the index finger. However, this



Figure 5: Quantitative results on DexterHO using 3D PCK. Sridhar et
al. represents result from [50], F.Mueller represents result from [32]
and Oberwegar et al., from [37].

Figure 6: Qualitative results on DexterHO dataset.

incomplete depth region still served as an adequate cue for the bare-
hand tracker, because of which the pose in the previous frame was
maintained.

Fig.7 shows the qualitative results on sequences of interaction
with simple objects that did not contain the ground-truth bare-hand
image. The trained image consisted of the randomly generated
2D silhouette of the object; we found that the proposed method
also produced an accurate bare-hand depth data for real objects.
Fig.8 is the qualitative results for challenging objects with complex
shape or texture or erroneous depth data. Although the inpainted
depth was relatively inaccurate, some effort to eliminate the region
corresponding to the object and generate depth data consistent with

the observed region of the hand can be observed.

Performance: The overall system was implemented in Python
using Tensorflow with an embedded c++ module, Intel Core i7, 32
GB of RAM, and an Nvidia GeForce GTX 1080 Ti GPU. The total
runtime was 32 ms, 12 ms for depth inpainting and 20 ms for HPF.
Thus, the proposed method ran at over 30 fps on a single GPU.

Limitation: The proposed method failed in situations that were
not considered in the design of the system. For the specular object
surface, erroneous data distribution occurred, as the depth data of
the object was completely lost. As the synthesized paired training
dataset had less real-world hand-object interaction pose distribu-
tion, including an egocentric viewpoint, the tracking results were
not sufficiently accurate in the unseen environment. Furthermore,
because the proposed framework was newly performed every frame
without temporal information, we found that the inpainting results
lack temporal continuity as an image was generated, regardless of
the previous frame. Finally, in the case of a bare-hand situation
in which there is no interaction with an object, although the depth
inpainting result revealed an attempt to generate the same bare hand,
unnecessary inference was observed in the raw depth data.

5 CONCLUSION

We presented a novel approach for the 3D tracking of a hand inter-
acting with an object. Our approach utilized the cGAN to generate
bare-depth images from RGB-D inputs, regardless of whether it
was a bare hand or a hand interacting with an object. To generalize
the method for various daily objects, we synthesized a 2D arbitrary
geometry depth mask on the self-generated bare-hand dataset, to
represent the projected silhouette of the object. Quantitative and
qualitative experiments demonstrated the effectiveness of our ap-
proach in a situation where the hand interacted with various objects.
With the system using a bare-hand tracker (HPF), the proposed
method exhibited comparable performance to the state-of-the-art of
the existing hand- object tracking methods. By enabling robust hand
tracking during interaction with various unknown objects, the pro-
posed method offered a higher DoF of interaction for AR users and
facilitated the assumption of bare-handedness by developers, regard-
less of the object manipulated by the user. Our work can be further
developed by adopting a semi-supervised learning technique and
leveraging advanced GANs to perform an enhanced cross-domain
transformation.
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[44] G. Riegler, D. Ferstl, M. Rüther, and H. Bischof. A deep primal-
dual network for guided depth super-resolution. arXiv preprint
arXiv:1607.08569, 2016.

[45] K. Roditakis, A. Makris, and A. A. Argyros. Generative 3D hand
tracking with spatially constrained pose sampling. In BMVC, vol. 1,
p. 2, 2017.

[46] G. Rogez, J. S. Supancic, and D. Ramanan. Understanding everyday
hands in action from RGB-D images. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 3889–3897, 2015.

[47] J. Romero, H. Kjellström, and D. Kragic. Hands in action: real-time
3d reconstruction of hands in interaction with objects. In 2010 IEEE
International Conference on Robotics and Automation, pp. 458–463.
IEEE, 2010.

[48] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional net-
works for biomedical image segmentation. In International Conference
on Medical Image Computing and Computer-assisted Intervention, pp.
234–241. Springer, 2015.

[49] T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton, D. Kim,
C. Rhemann, I. Leichter, A. Vinnikov, Y. Wei, et al. Accurate, robust,
and flexible real-time hand tracking. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, pp. 3633–
3642, 2015.

[50] S. Sridhar, F. Mueller, M. Zollhöfer, D. Casas, A. Oulasvirta, and
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